Akhtar Zaman, Muhammad Haneef, Humayun Khan, B. A. Bacha, H. I. Elsaeedy
{"title":"Para- and dia-magnetization distribution via localization of atom by absorption and magnetic loss","authors":"Akhtar Zaman, Muhammad Haneef, Humayun Khan, B. A. Bacha, H. I. Elsaeedy","doi":"10.1080/17455030.2023.2277893","DOIUrl":null,"url":null,"abstract":"AbstractA high magneto-optical medium is used to modify atom localization by magnetic loss and absorption spectrum with para and dia magnetization distribution. The localization is investigated in the range of −0.1λ≤y≤0.1λ or λ/5 distance along x-axis and y-axis. Dia-magnetization hole is investigated within the range λ/10 along x-axis and y-axis. Crater-type atom localization peak is reported by a magnetic loss, and a burner-like localization peak is investigated by absorption with dia-magnetization hole distribution. A para-magnetization hole is also investigated in the range of −0.05λ≤x,y≤0.05λ. Gaussian-type atom localization peaks are investigated by both magnetic loss and absorption spectrum in the para-magnetization hole region. Depth and grave-type atom localization is also reported in the para and dia-magnetic region by absorption and magnetic loss spectrum.Keywords: Atom localizationmagnetization distributionmagnetic lossabsorptionnano-lithography Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, [Muhammad Haneef], upon reasonable requestAdditional informationFundingThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP.2/151/44.","PeriodicalId":23598,"journal":{"name":"Waves in Random and Complex Media","volume":"55 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waves in Random and Complex Media","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/17455030.2023.2277893","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractA high magneto-optical medium is used to modify atom localization by magnetic loss and absorption spectrum with para and dia magnetization distribution. The localization is investigated in the range of −0.1λ≤y≤0.1λ or λ/5 distance along x-axis and y-axis. Dia-magnetization hole is investigated within the range λ/10 along x-axis and y-axis. Crater-type atom localization peak is reported by a magnetic loss, and a burner-like localization peak is investigated by absorption with dia-magnetization hole distribution. A para-magnetization hole is also investigated in the range of −0.05λ≤x,y≤0.05λ. Gaussian-type atom localization peaks are investigated by both magnetic loss and absorption spectrum in the para-magnetization hole region. Depth and grave-type atom localization is also reported in the para and dia-magnetic region by absorption and magnetic loss spectrum.Keywords: Atom localizationmagnetization distributionmagnetic lossabsorptionnano-lithography Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementThe data that support the findings of this study are available from the corresponding author, [Muhammad Haneef], upon reasonable requestAdditional informationFundingThe authors extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number RGP.2/151/44.
期刊介绍:
Waves in Random and Complex Media (formerly Waves in Random Media ) is a broad, interdisciplinary journal that reports theoretical, applied and experimental research related to any wave phenomena.
The field of wave phenomena is all-pervading, fast-moving and exciting; more and more, researchers are looking for a journal which addresses the understanding of wave-matter interactions in increasingly complex natural and engineered media. With its foundations in the scattering and propagation community, Waves in Random and Complex Media is becoming a key forum for research in both established fields such as imaging through turbulence, as well as emerging fields such as metamaterials.
The Journal is of interest to scientists and engineers working in the field of wave propagation, scattering and imaging in random or complex media. Papers on theoretical developments, experimental results and analytical/numerical studies are considered for publication, as are deterministic problems when also linked to random or complex media. Papers are expected to report original work, and must be comprehensible and of general interest to the broad community working with wave phenomena.