Method of Security Improvement for MST3 Cryptosystem Based on Automorphism Group of Ree Function Field

Yevgen Kotukh, Gennady Khalimov, Maxim Korobchinskiy
{"title":"Method of Security Improvement for MST3 Cryptosystem Based on Automorphism Group of Ree Function Field","authors":"Yevgen Kotukh, Gennady Khalimov, Maxim Korobchinskiy","doi":"10.20535/tacs.2664-29132023.2.290414","DOIUrl":null,"url":null,"abstract":"
 
 
 This article is a part of a research endeavor focused on creating a quantum-resistant cryptosystem for secure encryption and decryption. Our approach employs a challenging word problem while emphasizing cost-effective implementation. Previous research has involved the development of encryption schemes based on high-order groups, offering potential security enhancements. The choice of the non-abelian group is a critical factor in shaping the encryption algorithms, feasibility of implementation, and system parameters. Our central objective is to design a cryptosystem that effectively thwarts quantum cryptanalysis. To achieve this, we employ a logarithmic signature along with a random cover across an entire finite non-abelian group. Our unique contribution lies in optimizing finite group selection, parameters, and circuit solutions for the logarithmic signature to meet specific security and implementation criteria. Within this paper, we introduce an encryption scheme utilizing automorphisms of the Ree functional field and propose a method for enhancing resistance to cryptanalysis through the binding of session keys.
 
 
","PeriodicalId":471817,"journal":{"name":"Theoretical and applied cybersecurity","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical and applied cybersecurity","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20535/tacs.2664-29132023.2.290414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article is a part of a research endeavor focused on creating a quantum-resistant cryptosystem for secure encryption and decryption. Our approach employs a challenging word problem while emphasizing cost-effective implementation. Previous research has involved the development of encryption schemes based on high-order groups, offering potential security enhancements. The choice of the non-abelian group is a critical factor in shaping the encryption algorithms, feasibility of implementation, and system parameters. Our central objective is to design a cryptosystem that effectively thwarts quantum cryptanalysis. To achieve this, we employ a logarithmic signature along with a random cover across an entire finite non-abelian group. Our unique contribution lies in optimizing finite group selection, parameters, and circuit solutions for the logarithmic signature to meet specific security and implementation criteria. Within this paper, we introduce an encryption scheme utilizing automorphisms of the Ree functional field and propose a method for enhancing resistance to cryptanalysis through the binding of session keys.
基于自由函数域自同构群的MST3密码系统安全性改进方法
& # x0D;& # x0D;& # x0D;本文是一项研究工作的一部分,重点是创建用于安全加密和解密的抗量子密码系统。我们的方法采用了一个具有挑战性的问题,同时强调成本效益的实施。先前的研究涉及基于高阶组的加密方案的开发,提供潜在的安全性增强。非阿贝尔群的选择是形成加密算法、实现可行性和系统参数的关键因素。我们的中心目标是设计一个有效地阻止量子密码分析的密码系统。为了实现这一点,我们在整个有限非阿贝尔群上使用对数签名和随机覆盖。我们的独特贡献在于优化对数签名的有限群选择,参数和电路解决方案,以满足特定的安全和实现标准。在本文中,我们引入了一种利用Ree函数域自同构的加密方案,并提出了一种通过会话密钥绑定来增强抗密码分析能力的方法。 & # x0D;& # x0D;
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信