Dona Marcelina, Annisa Kurnia, Terttiaavini Terttiaavini
{"title":"Analisis Klaster Kinerja Usaha Kecil dan Menengah Menggunakan Algoritma K-Means Clustering","authors":"Dona Marcelina, Annisa Kurnia, Terttiaavini Terttiaavini","doi":"10.57152/malcom.v3i2.952","DOIUrl":null,"url":null,"abstract":"Fokus penelitian ini adalah untuk menyelesaikan masalah yang dihadapi oleh dinas koperasi dan UKM Provinsi Sumatera Selatan, yaitu kesulitan dalam menerapkan program pengembangan usaha bagi UKM. Selama ini dinas koperasi dan UKM Provinsi Sumatera selatan telah melakukan berbagai kegiatan yang berhubungan dengan peningkatan kualitas pengelolaan UKM. Namun karena pendataan UKM kurang lengkap, maka sulit untuk menentukan program terbaik bagi UKM yang dapat mempercepat pengembangan usaha di UKM. Tujuan dari penelitian ini adalah untuk melengkapi data UKM melalui penyebaran kuesioner dan melakukan mengelompokkan UKM berdasarkan kinerja UKM. Pengelompokan ini nantinya akan digunakan untuk menyusun strategi pengembangan UKM yang sesuai dan tepat sasaran. Penelitian ini, menggunakan metode K-Means Clustering dengan indikator, yaitu kinerja keuangan, penjualan produk, dan strategi pemasaran sebagai dasar pengelompokkan. Aplikasi KNIME digunakan sebagai alat untuk analisis data, pemrosesan data, pemodelan data, dan visualisasi model yang mudah dan akurat. Hasil analisis data menunjukkan UMKM terbagi menjadi tiga kelompok atau klaster, yaitu UKM mandiri, UKM berkembang, dan UKM binaan. Hasil pengelompokkan ini diharapkan dapat memberikan masukkan yang berguna bagi Dinas Koperasi dan UKM untuk menerapkan program pengembangan strategi yang lebih spesifik yang sesuai dengan karakteristik dari masing-masing klaster.","PeriodicalId":499353,"journal":{"name":"MALCOM Indonesian Journal of Machine Learning and Computer Science","volume":"52 6","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"MALCOM Indonesian Journal of Machine Learning and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.57152/malcom.v3i2.952","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Fokus penelitian ini adalah untuk menyelesaikan masalah yang dihadapi oleh dinas koperasi dan UKM Provinsi Sumatera Selatan, yaitu kesulitan dalam menerapkan program pengembangan usaha bagi UKM. Selama ini dinas koperasi dan UKM Provinsi Sumatera selatan telah melakukan berbagai kegiatan yang berhubungan dengan peningkatan kualitas pengelolaan UKM. Namun karena pendataan UKM kurang lengkap, maka sulit untuk menentukan program terbaik bagi UKM yang dapat mempercepat pengembangan usaha di UKM. Tujuan dari penelitian ini adalah untuk melengkapi data UKM melalui penyebaran kuesioner dan melakukan mengelompokkan UKM berdasarkan kinerja UKM. Pengelompokan ini nantinya akan digunakan untuk menyusun strategi pengembangan UKM yang sesuai dan tepat sasaran. Penelitian ini, menggunakan metode K-Means Clustering dengan indikator, yaitu kinerja keuangan, penjualan produk, dan strategi pemasaran sebagai dasar pengelompokkan. Aplikasi KNIME digunakan sebagai alat untuk analisis data, pemrosesan data, pemodelan data, dan visualisasi model yang mudah dan akurat. Hasil analisis data menunjukkan UMKM terbagi menjadi tiga kelompok atau klaster, yaitu UKM mandiri, UKM berkembang, dan UKM binaan. Hasil pengelompokkan ini diharapkan dapat memberikan masukkan yang berguna bagi Dinas Koperasi dan UKM untuk menerapkan program pengembangan strategi yang lebih spesifik yang sesuai dengan karakteristik dari masing-masing klaster.