Deep Convolutional Neural Network Algorithm for Prediction of the Mechanical Properties of Friction Stir Welded Copper Joints from its Microstructures

AKSHANSH MISHRA, Asmita Suman
{"title":"Deep Convolutional Neural Network Algorithm for Prediction of the Mechanical Properties of Friction Stir Welded Copper Joints from its Microstructures","authors":"AKSHANSH MISHRA, Asmita Suman","doi":"10.26628/simp.wtr.v95.1150.25-31","DOIUrl":null,"url":null,"abstract":"Convolutional Neural Network (CNN) is a special type of Artificial Neural Network which takes input in the form of an image. Like Artificial Neural Network they consist of weights that are estimated during training, neurons (activation functions), and an objective (loss function). CNN is finding various applications in image recognition, semantic segmentation, object detection, and localization. The present work deals with the prediction of the welding efficiency of the Friction Stir Welded joints on the basis of microstructure images by carrying out training on 3000 microstructure images and further testing on 300 microstructure images. The obtained results showed an accuracy of 80 % on the validation dataset.","PeriodicalId":52939,"journal":{"name":"Przeglad Spawalnictwa","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Przeglad Spawalnictwa","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.26628/simp.wtr.v95.1150.25-31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Convolutional Neural Network (CNN) is a special type of Artificial Neural Network which takes input in the form of an image. Like Artificial Neural Network they consist of weights that are estimated during training, neurons (activation functions), and an objective (loss function). CNN is finding various applications in image recognition, semantic segmentation, object detection, and localization. The present work deals with the prediction of the welding efficiency of the Friction Stir Welded joints on the basis of microstructure images by carrying out training on 3000 microstructure images and further testing on 300 microstructure images. The obtained results showed an accuracy of 80 % on the validation dataset.
基于深度卷积神经网络的铜搅拌摩擦焊接接头微观力学性能预测
卷积神经网络(CNN)是一种特殊类型的人工神经网络,它以图像的形式接受输入。像人工神经网络一样,它们由训练过程中估计的权重、神经元(激活函数)和目标(损失函数)组成。CNN正在寻找图像识别、语义分割、目标检测和定位等方面的各种应用。本工作通过对3000张显微组织图像进行训练,对300张显微组织图像进行进一步测试,对搅拌摩擦焊接接头的焊接效率进行了预测。在验证数据集上获得的结果显示准确率为80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
审稿时长
9 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信