Detection of Varroa destructor Infestation of Honeybees Based on Segmentation and Object Detection Convolutional Neural Networks

Mochen Liu, Mingshi Cui, Baohua Xu, Zhenguo Liu, Zhenghao Li, Zhenyuan Chu, Xinshan Zhang, Guanlu Liu, Xiaoli Xu, Yinfa Yan
{"title":"Detection of Varroa destructor Infestation of Honeybees Based on Segmentation and Object Detection Convolutional Neural Networks","authors":"Mochen Liu, Mingshi Cui, Baohua Xu, Zhenguo Liu, Zhenghao Li, Zhenyuan Chu, Xinshan Zhang, Guanlu Liu, Xiaoli Xu, Yinfa Yan","doi":"10.3390/agriengineering5040102","DOIUrl":null,"url":null,"abstract":"Varroa destructor infestation is a major factor leading to the global decline of honeybee populations. Monitoring the level of Varroa mite infestation in order to take timely control measures is crucial for the protection of bee colonies. Machine vision systems can achieve non-invasive Varroa mite detection on bee colonies, but it is challenged by two factors: the complex dynamic scenes of honeybees and small-scale and limited data on Varroa destructor. We design a convolutional neural network integrated with machine vision to solve these problems. To address the first challenge, we separate the image of the honeybee from its surroundings using a segmentation network, and the object-detection network YOLOX detects Varroa mites within the segmented regions. This collaboration between segmentation and object detection allows for more precise detection and reduces false positives. To handle the second challenge, we add a Coordinate Attention (CA) mechanism in YOLOX to extract a more discriminative representation of Varroa destructor and improve the confidence loss function to alleviate the problem of class imbalance. The experimental results in the bee farm showed that the evaluation metrics of our model are better than other models. Our network’s detection value for the percentage of honeybees infested with Varroa mites is 1.13%, which is the closest to the true value of 1.19% among all the detection values.","PeriodicalId":7846,"journal":{"name":"AgriEngineering","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AgriEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/agriengineering5040102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Varroa destructor infestation is a major factor leading to the global decline of honeybee populations. Monitoring the level of Varroa mite infestation in order to take timely control measures is crucial for the protection of bee colonies. Machine vision systems can achieve non-invasive Varroa mite detection on bee colonies, but it is challenged by two factors: the complex dynamic scenes of honeybees and small-scale and limited data on Varroa destructor. We design a convolutional neural network integrated with machine vision to solve these problems. To address the first challenge, we separate the image of the honeybee from its surroundings using a segmentation network, and the object-detection network YOLOX detects Varroa mites within the segmented regions. This collaboration between segmentation and object detection allows for more precise detection and reduces false positives. To handle the second challenge, we add a Coordinate Attention (CA) mechanism in YOLOX to extract a more discriminative representation of Varroa destructor and improve the confidence loss function to alleviate the problem of class imbalance. The experimental results in the bee farm showed that the evaluation metrics of our model are better than other models. Our network’s detection value for the percentage of honeybees infested with Varroa mites is 1.13%, which is the closest to the true value of 1.19% among all the detection values.
基于分割与目标检测卷积神经网络的蜜蜂灭蟑检测
灭蟑是导致全球蜜蜂数量下降的一个主要因素。监测螨害水平,及时采取防治措施,对保护蜂群至关重要。机器视觉系统可以实现蜂群瓦螨的非侵入性检测,但蜜蜂动态场景复杂、瓦螨破坏器数据规模小、有限等因素对机器视觉检测提出了挑战。我们设计了一个与机器视觉相结合的卷积神经网络来解决这些问题。为了解决第一个挑战,我们使用分割网络将蜜蜂的图像与其周围环境分开,并且目标检测网络YOLOX在分割区域内检测瓦螨。分割和对象检测之间的这种协作允许更精确的检测并减少误报。为了解决第二个挑战,我们在YOLOX中加入了一个坐标注意(CA)机制,以提取更具判别性的Varroa析构函数表示,并改进置信损失函数以缓解类不平衡问题。在养蜂场的实验结果表明,该模型的评价指标优于其他模型。我们的网络对蜜蜂被瓦螨感染比例的检测值为1.13%,这是所有检测值中最接近真实值1.19%的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信