M. Sobhana, Gudapati Satya Dinesh Kumar, Yarramreddy Tejaswi, Pavithra Pakkiru
{"title":"Detecting Urban Road Changes using Segmentation and Vector Analysis","authors":"M. Sobhana, Gudapati Satya Dinesh Kumar, Yarramreddy Tejaswi, Pavithra Pakkiru","doi":"10.52549/ijeei.v11i3.4662","DOIUrl":null,"url":null,"abstract":"The rapid growth of urbanization is driving increased road infrastructure development. Detecting and monitoring changes in urban road areas is challenging for city planners. This research proposes using semantic segmentation and vector analysis on high-resolution images to identify road network changes. The U-Net model performs semantic segmentation, pre-trained on a Massachusetts road dataset, predicting labels for a specific area with temporal data and co-registration to reduce distortions. Predicted labels are converted to shapefiles for vector analysis. Satellite images from Google Earth archives demonstrate the change detection process. The outcome of this predictive phase was the transformation of projected labels into shapefiles, thereby facilitating vector analysis to pinpoint and characterize alterations.","PeriodicalId":37618,"journal":{"name":"Indonesian Journal of Electrical Engineering and Informatics","volume":"47 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indonesian Journal of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52549/ijeei.v11i3.4662","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
Abstract
The rapid growth of urbanization is driving increased road infrastructure development. Detecting and monitoring changes in urban road areas is challenging for city planners. This research proposes using semantic segmentation and vector analysis on high-resolution images to identify road network changes. The U-Net model performs semantic segmentation, pre-trained on a Massachusetts road dataset, predicting labels for a specific area with temporal data and co-registration to reduce distortions. Predicted labels are converted to shapefiles for vector analysis. Satellite images from Google Earth archives demonstrate the change detection process. The outcome of this predictive phase was the transformation of projected labels into shapefiles, thereby facilitating vector analysis to pinpoint and characterize alterations.
期刊介绍:
The journal publishes original papers in the field of electrical, computer and informatics engineering which covers, but not limited to, the following scope: Electronics: Electronic Materials, Microelectronic System, Design and Implementation of Application Specific Integrated Circuits (ASIC), VLSI Design, System-on-a-Chip (SoC) and Electronic Instrumentation Using CAD Tools, digital signal & data Processing, , Biomedical Transducers and instrumentation. Electrical: Electrical Engineering Materials, Electric Power Generation, Transmission and Distribution, Power Electronics, Power Quality, Power Economic, FACTS, Renewable Energy, Electric Traction. Telecommunication: Modulation and Signal Processing for Telecommunication, Information Theory and Coding, Antenna and Wave Propagation, Wireless and Mobile Communications, Radio Communication, Communication Electronics and Microwave, Radar Imaging. Control: Optimal, Robust and Adaptive Controls, Non Linear and Stochastic Controls, Modeling and Identification, Robotics, Image Based Control, Hybrid and Switching Control, Process Optimization and Scheduling, Control and Intelligent Systems. Computer and Informatics: Computer Architecture, Parallel and Distributed Computer, Pervasive Computing, Computer Network, Embedded System, Human—Computer Interaction, Virtual/Augmented Reality, Computer Security, Software Engineering (Software: Lifecycle, Management, Engineering Process, Engineering Tools and Methods), Programming (Programming Methodology and Paradigm), Data Engineering (Data and Knowledge level Modeling, Information Management (DB) practices, Knowledge Based Management System, Knowledge Discovery in Data).