Power Equalization Strategy Based on Adaptive Virtual Impedance

IF 4.6 Q1 OPTICS
Xiong Lv, Baoge Zhang, Hao Tian, Yongquan Ren, Fuhong Cui
{"title":"Power Equalization Strategy Based on Adaptive Virtual Impedance","authors":"Xiong Lv, Baoge Zhang, Hao Tian, Yongquan Ren, Fuhong Cui","doi":"10.1088/1742-6596/2632/1/012018","DOIUrl":null,"url":null,"abstract":"Abstract Due to the differences in the line resistance of each distributed generation unit, conventional sag control does not allow for precise distribution of power, which also reduces the problem of system reactive power accuracy. To address this problem, this paper analyzes the power equalization and distribution conditions. A method for adaptive adjustment of virtual resistance by system output power feedback is submitted. Reducing the variance among the original line resistances aims to solve the problem of power not being evenly divided and improve the equalization of reactive power. By building a Simulink parallel simulation model of the inverter, it is verified that the power feedback-based fetching and the improved droop control is effective.","PeriodicalId":44008,"journal":{"name":"Journal of Physics-Photonics","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Photonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1742-6596/2632/1/012018","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Due to the differences in the line resistance of each distributed generation unit, conventional sag control does not allow for precise distribution of power, which also reduces the problem of system reactive power accuracy. To address this problem, this paper analyzes the power equalization and distribution conditions. A method for adaptive adjustment of virtual resistance by system output power feedback is submitted. Reducing the variance among the original line resistances aims to solve the problem of power not being evenly divided and improve the equalization of reactive power. By building a Simulink parallel simulation model of the inverter, it is verified that the power feedback-based fetching and the improved droop control is effective.
基于自适应虚拟阻抗的功率均衡策略
摘要由于各分布式发电机组的线路电阻存在差异,常规的暂降控制无法实现功率的精确分配,也降低了系统无功功率精度的问题。针对这一问题,本文分析了电力均衡和分配条件。提出了一种利用系统输出功率反馈自适应调整虚电阻的方法。减小原始线路电阻之间的方差是为了解决功率分配不均匀的问题,提高无功功率的均衡性。通过建立逆变器的Simulink并行仿真模型,验证了基于功率反馈的抓取和改进的下垂控制的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
10.70
自引率
0.00%
发文量
27
审稿时长
12 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信