Simulation of ultrafast electron diffraction intensity under coherent acoustic phonons

Yongzhao Zhang, Jun Li, Wentao Wang, Huanfang Tian, Wenli Gao, Jianqi Li, Shuaishuai Sun, Huaixin Yang
{"title":"Simulation of ultrafast electron diffraction intensity under coherent acoustic phonons","authors":"Yongzhao Zhang, Jun Li, Wentao Wang, Huanfang Tian, Wenli Gao, Jianqi Li, Shuaishuai Sun, Huaixin Yang","doi":"10.1063/4.0000199","DOIUrl":null,"url":null,"abstract":"Ultrafast electron diffraction has been proven to be a powerful tool for the study of coherent acoustic phonons owing to its high sensitivity to crystal structures. However, this sensitivity leads to complicated behavior of the diffraction intensity, which complicates the analysis process of phonons, especially higher harmonics. Here, we theoretically analyze the effects of photoinduced coherent transverse and longitudinal acoustic phonons on electron diffraction to provide a guide for the exploitation and modulation of coherent phonons. The simulation of the electron diffraction was performed in 30-nm films with different optical penetration depths based on the atomic displacements obtained by solving the wave equation. The simulation results exhibit a complex relationship between the frequencies of the phonons and diffraction signals, which highly depends on the laser penetration depth, sample thickness, and temporal stress distribution. In addition, an intensity decomposition method is proposed to account for the in-phase oscillation and high harmonics caused by inhomogeneous excitation. These results can provide new perspectives and insights for a comprehensive and accurate understanding of the lattice response under coherent phonons.","PeriodicalId":21992,"journal":{"name":"Structural Dynamics","volume":"57 1-2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Structural Dynamics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/4.0000199","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ultrafast electron diffraction has been proven to be a powerful tool for the study of coherent acoustic phonons owing to its high sensitivity to crystal structures. However, this sensitivity leads to complicated behavior of the diffraction intensity, which complicates the analysis process of phonons, especially higher harmonics. Here, we theoretically analyze the effects of photoinduced coherent transverse and longitudinal acoustic phonons on electron diffraction to provide a guide for the exploitation and modulation of coherent phonons. The simulation of the electron diffraction was performed in 30-nm films with different optical penetration depths based on the atomic displacements obtained by solving the wave equation. The simulation results exhibit a complex relationship between the frequencies of the phonons and diffraction signals, which highly depends on the laser penetration depth, sample thickness, and temporal stress distribution. In addition, an intensity decomposition method is proposed to account for the in-phase oscillation and high harmonics caused by inhomogeneous excitation. These results can provide new perspectives and insights for a comprehensive and accurate understanding of the lattice response under coherent phonons.
相干声子下超快电子衍射强度的模拟
超快电子衍射由于其对晶体结构的高灵敏度,已被证明是研究相干声子的有力工具。然而,这种灵敏度导致了衍射强度的复杂行为,使声子特别是高次声子的分析过程变得复杂。本文从理论上分析了光诱导相干横向声子和纵向声子对电子衍射的影响,为相干声子的开发和调制提供指导。基于求解波动方程得到的原子位移,在不同光穿透深度的30 nm薄膜上进行了电子衍射模拟。仿真结果表明,声子频率与衍射信号之间存在复杂的关系,这种关系高度依赖于激光穿透深度、样品厚度和时间应力分布。此外,针对非均匀激励引起的同相振荡和高次谐波,提出了一种强度分解方法。这些结果可以为全面准确地理解相干声子下的晶格响应提供新的视角和见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信