Luis C. Fernandez, Nathan J. Secrest, Megan C. Johnson, Travis C. Fischer
{"title":"FRAMEx. IV. Mechanical Feedback from the Active Galactic Nucleus in NGC 3079","authors":"Luis C. Fernandez, Nathan J. Secrest, Megan C. Johnson, Travis C. Fischer","doi":"10.3847/1538-4357/acfeda","DOIUrl":null,"url":null,"abstract":"Abstract Using the Very Long Baseline Array, we observed the active galactic nucleus (AGN) in NGC 3079 over a span of six months to test for variability in the two main parsec-scale radio components, A and B , which lie on either side of the AGN. We found evidence for positional differences in the positions of A and B over the six months consistent with the apparent motion of these components extrapolated from older archival data, finding that their projected rate of separation, (0.040 ± 0.003) c , has remained constant since ∼2004 when a slowdown concurrent with a dramatic brightening of source A occurred. This behavior is consistent with an interaction of source A with the interstellar medium (ISM), as has previously been suggested in the literature. We calculated the amount of mechanical feedback on the ISM for both the scenario in which A is an expulsion of material from the central engine and the scenario in which A is a shock front produced by a relativistic jet, the latter of which is favored by several lines of evidence we discuss. We find that the cumulative mechanical feedback on the ISM is between 2 × 10 44 and 1 × 10 48 erg for the expulsion scenario or between 3 × 10 50 and 1 × 10 52 erg for the jet scenario. Integrated over the volume-complete Fundamental Reference AGN Monitoring Experiment (FRAMEx) sample, our results imply that jet-mode mechanical feedback plays a negligible role in the energetics of AGNs in the local Universe.","PeriodicalId":50735,"journal":{"name":"Astrophysical Journal","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/acfeda","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Using the Very Long Baseline Array, we observed the active galactic nucleus (AGN) in NGC 3079 over a span of six months to test for variability in the two main parsec-scale radio components, A and B , which lie on either side of the AGN. We found evidence for positional differences in the positions of A and B over the six months consistent with the apparent motion of these components extrapolated from older archival data, finding that their projected rate of separation, (0.040 ± 0.003) c , has remained constant since ∼2004 when a slowdown concurrent with a dramatic brightening of source A occurred. This behavior is consistent with an interaction of source A with the interstellar medium (ISM), as has previously been suggested in the literature. We calculated the amount of mechanical feedback on the ISM for both the scenario in which A is an expulsion of material from the central engine and the scenario in which A is a shock front produced by a relativistic jet, the latter of which is favored by several lines of evidence we discuss. We find that the cumulative mechanical feedback on the ISM is between 2 × 10 44 and 1 × 10 48 erg for the expulsion scenario or between 3 × 10 50 and 1 × 10 52 erg for the jet scenario. Integrated over the volume-complete Fundamental Reference AGN Monitoring Experiment (FRAMEx) sample, our results imply that jet-mode mechanical feedback plays a negligible role in the energetics of AGNs in the local Universe.
期刊介绍:
The Astrophysical Journal is the foremost research journal in the world devoted to recent developments, discoveries, and theories in astronomy and astrophysics.