{"title":"On the codewords of generalized Reed-Muller codes reaching the fourth weight","authors":"Somayyeh Golalizadeh, Nasrin Soltankhah","doi":"10.1016/j.ic.2023.105113","DOIUrl":null,"url":null,"abstract":"<div><p>Recently, the fourth weight of generalized Reed-Muller codes <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>a</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>b</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> have been characterized for <span><math><mn>3</mn><mo>≤</mo><mi>b</mi><mo><</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>a</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>3</mn></math></span>. In this paper, we study the codewords reaching the fourth weight of generalized Reed-Muller codes. We will determine the fourth weight codewords of generalized Reed-Muller codes of order <span><math><mi>r</mi><mo>=</mo><mi>a</mi><mo>(</mo><mi>q</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>+</mo><mi>b</mi></math></span> with <span><math><mn>3</mn><mo>≤</mo><mi>b</mi><mo><</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span> and <span><math><mn>0</mn><mo>≤</mo><mi>a</mi><mo>≤</mo><mi>m</mi><mo>−</mo><mn>3</mn></math></span>. Also, we characterize the number of fourth weight codewords of <span><math><msub><mrow><mi>R</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>(</mo><mi>b</mi><mo>,</mo><mi>m</mi><mo>)</mo></math></span> for <span><math><mn>3</mn><mo>≤</mo><mi>b</mi><mo><</mo><mfrac><mrow><mi>q</mi><mo>+</mo><mn>4</mn></mrow><mrow><mn>3</mn></mrow></mfrac></math></span>.</p></div>","PeriodicalId":54985,"journal":{"name":"Information and Computation","volume":"296 ","pages":"Article 105113"},"PeriodicalIF":0.8000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information and Computation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0890540123001165","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, the fourth weight of generalized Reed-Muller codes have been characterized for and . In this paper, we study the codewords reaching the fourth weight of generalized Reed-Muller codes. We will determine the fourth weight codewords of generalized Reed-Muller codes of order with and . Also, we characterize the number of fourth weight codewords of for .
期刊介绍:
Information and Computation welcomes original papers in all areas of theoretical computer science and computational applications of information theory. Survey articles of exceptional quality will also be considered. Particularly welcome are papers contributing new results in active theoretical areas such as
-Biological computation and computational biology-
Computational complexity-
Computer theorem-proving-
Concurrency and distributed process theory-
Cryptographic theory-
Data base theory-
Decision problems in logic-
Design and analysis of algorithms-
Discrete optimization and mathematical programming-
Inductive inference and learning theory-
Logic & constraint programming-
Program verification & model checking-
Probabilistic & Quantum computation-
Semantics of programming languages-
Symbolic computation, lambda calculus, and rewriting systems-
Types and typechecking