An analysis of conditional mean-variance portfolio performance using hierarchical clustering

Q1 Mathematics
Stephen R. Owen
{"title":"An analysis of conditional mean-variance portfolio performance using hierarchical clustering","authors":"Stephen R. Owen","doi":"10.1016/j.jfds.2023.100112","DOIUrl":null,"url":null,"abstract":"<div><p>This paper studies portfolio optimization through improvements of ex-ante conditional covariance estimates. We use the cross-section of stock returns over a 52-year sample to analyze trading performance by implementing the machine learning algorithm of hierarchical clustering. We find that higher out-of-sample risk-adjusted returns are achieved relative to the traditional Markowitz portfolio through hierarchical clustering using a 3-month buy-and-hold, long-only strategy. Additionally, the average change in portfolio weights at each rebalancing period is significantly lower for the portfolio formed using machine learning relative to Markowitz, decreasing investor trading costs. The results are robust to various settings and subsamples.</p></div>","PeriodicalId":36340,"journal":{"name":"Journal of Finance and Data Science","volume":"9 ","pages":"Article 100112"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2405918823000284/pdfft?md5=f08cced7b32b9843b62604332db0b92a&pid=1-s2.0-S2405918823000284-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Finance and Data Science","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405918823000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies portfolio optimization through improvements of ex-ante conditional covariance estimates. We use the cross-section of stock returns over a 52-year sample to analyze trading performance by implementing the machine learning algorithm of hierarchical clustering. We find that higher out-of-sample risk-adjusted returns are achieved relative to the traditional Markowitz portfolio through hierarchical clustering using a 3-month buy-and-hold, long-only strategy. Additionally, the average change in portfolio weights at each rebalancing period is significantly lower for the portfolio formed using machine learning relative to Markowitz, decreasing investor trading costs. The results are robust to various settings and subsamples.

利用分层聚类分析条件均值-方差投资组合绩效
本文通过改进事前条件协方差估计来研究投资组合优化。我们采用分层聚类的机器学习算法,利用 52 年样本股票收益的横截面来分析交易绩效。我们发现,与传统的马科维茨投资组合相比,通过使用 3 个月买入并持有的只做多策略进行分层聚类,可以获得更高的样本外风险调整回报。此外,相对于马科维茨,使用机器学习形成的投资组合在每个再平衡期的投资组合权重平均变化要低得多,从而降低了投资者的交易成本。这些结果对各种设置和子样本都是稳健的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Finance and Data Science
Journal of Finance and Data Science Mathematics-Statistics and Probability
CiteScore
3.90
自引率
0.00%
发文量
15
审稿时长
30 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信