Stability for the inverse source problem in a two-layered medium separated by rough interface

IF 1.2 4区 数学 Q2 MATHEMATICS, APPLIED
Guanghui Hu, Xiang Xu, Xiaokai Yuan, Yue Zhao
{"title":"Stability for the inverse source problem in a two-layered medium separated by rough interface","authors":"Guanghui Hu, Xiang Xu, Xiaokai Yuan, Yue Zhao","doi":"10.3934/ipi.2023047","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate an inverse source problem for the two-dimensional Helmholtz equation in a two-layered medium. The interface between two media is assumed to be nonlocal and rough, while the compactly supported unknown source is buried in the lower-half medium. For the forward problem, we prove the radiating behaviour of the wave field based on the Angular Spectrum Representation and the asymptotics of Hankel functions. For the inverse problem, using multi-frequency interface measurements, which are limited-aperture, we show an increasing stability estimate which consists of two parts: one part is a Hölder stability estimate, the other part is a logarithmic stability estimate. The latter decreases as the upper bound of the frequency increases. In the derivation of the stability, we require the source function to have an $ H^3 $ regularity to control the high frequency tail of its Fourier transform. To recover the source numerically, we propose a recursive Kaczmarz-Landweber iteration scheme with incomplete data. Numerical examples are presented to justify the theoretical stability estimate and validity of the scheme.","PeriodicalId":50274,"journal":{"name":"Inverse Problems and Imaging","volume":"53 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inverse Problems and Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/ipi.2023047","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we investigate an inverse source problem for the two-dimensional Helmholtz equation in a two-layered medium. The interface between two media is assumed to be nonlocal and rough, while the compactly supported unknown source is buried in the lower-half medium. For the forward problem, we prove the radiating behaviour of the wave field based on the Angular Spectrum Representation and the asymptotics of Hankel functions. For the inverse problem, using multi-frequency interface measurements, which are limited-aperture, we show an increasing stability estimate which consists of two parts: one part is a Hölder stability estimate, the other part is a logarithmic stability estimate. The latter decreases as the upper bound of the frequency increases. In the derivation of the stability, we require the source function to have an $ H^3 $ regularity to control the high frequency tail of its Fourier transform. To recover the source numerically, we propose a recursive Kaczmarz-Landweber iteration scheme with incomplete data. Numerical examples are presented to justify the theoretical stability estimate and validity of the scheme.
由粗糙界面分离的两层介质中逆源问题的稳定性
本文研究了两层介质中二维亥姆霍兹方程的逆源问题。假设两种介质之间的界面是非局部粗糙的,而紧支撑的未知源则埋在下半部介质中。对于正演问题,我们基于角谱表示和Hankel函数的渐近性证明了波场的辐射行为。对于反问题,利用有限孔径的多频界面测量,我们给出了一个递增的稳定性估计,它由两部分组成:一部分是Hölder稳定性估计,另一部分是对数稳定性估计。后者随着频率上界的增大而减小。在稳定性的推导中,我们要求源函数具有H^3的正则性以控制其傅里叶变换的高频尾部。为了在数值上恢复源,我们提出了一种不完全数据下的递归Kaczmarz-Landweber迭代方案。数值算例验证了该方法的理论稳定性估计和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Inverse Problems and Imaging
Inverse Problems and Imaging 数学-物理:数学物理
CiteScore
2.50
自引率
0.00%
发文量
55
审稿时长
>12 weeks
期刊介绍: Inverse Problems and Imaging publishes research articles of the highest quality that employ innovative mathematical and modeling techniques to study inverse and imaging problems arising in engineering and other sciences. Every published paper has a strong mathematical orientation employing methods from such areas as control theory, discrete mathematics, differential geometry, harmonic analysis, functional analysis, integral geometry, mathematical physics, numerical analysis, optimization, partial differential equations, and stochastic and statistical methods. The field of applications includes medical and other imaging, nondestructive testing, geophysical prospection and remote sensing as well as image analysis and image processing. This journal is committed to recording important new results in its field and will maintain the highest standards of innovation and quality. To be published in this journal, a paper must be correct, novel, nontrivial and of interest to a substantial number of researchers and readers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信