{"title":"An enhanced switching active disturbance rejection controller for speed control of permanent magnet synchronous motor","authors":"Peng Gao, Huihui Pan","doi":"10.1587/elex.20.20230476","DOIUrl":null,"url":null,"abstract":"In this study, a novel active disturbance rejection controller (ADRC) is proposed to significantly improve the speed control performance of permanent magnet synchronous motor (PMSM). The conventional ADRC, namely linear active disturbance rejection controller (LADRC) and nonlinear active disturbance rejection controller (NLADRC), both them have their own merits and drawbacks. Thus, an enhanced switching active disturbance rejection controller (ESADRC) is developed to counteract the impacts of the speed-loop for the PMSM. The proposed ESADRC comprises several novel components including a novel tracking differentiator (TD), a novel switching extended state observer (SESO), a novel switching state error feedback (SSEF), and a cascaded extended state observer (ESO). The cascaded ESO is responsible for estimating the remaining disturbance after the SESO. Through comparative verification, it is verified that the proposed ESADRC outperforms the traditional ADRCs in terms of performance.","PeriodicalId":50387,"journal":{"name":"Ieice Electronics Express","volume":"109 1","pages":"0"},"PeriodicalIF":0.8000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Electronics Express","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/elex.20.20230476","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, a novel active disturbance rejection controller (ADRC) is proposed to significantly improve the speed control performance of permanent magnet synchronous motor (PMSM). The conventional ADRC, namely linear active disturbance rejection controller (LADRC) and nonlinear active disturbance rejection controller (NLADRC), both them have their own merits and drawbacks. Thus, an enhanced switching active disturbance rejection controller (ESADRC) is developed to counteract the impacts of the speed-loop for the PMSM. The proposed ESADRC comprises several novel components including a novel tracking differentiator (TD), a novel switching extended state observer (SESO), a novel switching state error feedback (SSEF), and a cascaded extended state observer (ESO). The cascaded ESO is responsible for estimating the remaining disturbance after the SESO. Through comparative verification, it is verified that the proposed ESADRC outperforms the traditional ADRCs in terms of performance.
期刊介绍:
An aim of ELEX is rapid publication of original, peer-reviewed short papers that treat the field of modern electronics and electrical engineering. The boundaries of acceptable fields are not strictly delimited and they are flexibly varied to reflect trends of the fields. The scope of ELEX has mainly been focused on device and circuit technologies. Current appropriate topics include:
- Integrated optoelectronics (lasers and optoelectronic devices, silicon photonics, planar lightwave circuits, polymer optical circuits, etc.)
- Optical hardware (fiber optics, microwave photonics, optical interconnects, photonic signal processing, photonic integration and modules, optical sensing, etc.)
- Electromagnetic theory
- Microwave and millimeter-wave devices, circuits, and modules
- THz devices, circuits and modules
- Electron devices, circuits and modules (silicon, compound semiconductor, organic and novel materials)
- Integrated circuits (memory, logic, analog, RF, sensor)
- Power devices and circuits
- Micro- or nano-electromechanical systems
- Circuits and modules for storage
- Superconducting electronics
- Energy harvesting devices, circuits and modules
- Circuits and modules for electronic displays
- Circuits and modules for electronic instrumentation
- Devices, circuits and modules for IoT and biomedical applications