{"title":"Anomaly detection for maritime navigation based on probability density function of error of reconstruction","authors":"Zahra Sadeghi, Stan Matwin","doi":"10.1515/jisys-2022-0270","DOIUrl":null,"url":null,"abstract":"Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"44 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2022-0270","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Anomaly detection is a fundamental problem in data science and is one of the highly studied topics in machine learning. This problem has been addressed in different contexts and domains. This article investigates anomalous data within time series data in the maritime sector. Since there is no annotated dataset for this purpose, in this study, we apply an unsupervised approach. Our method benefits from the unsupervised learning feature of autoencoders. We utilize the reconstruction error as a signal for anomaly detection. For this purpose, we estimate the probability density function of the reconstruction error and find different levels of abnormality based on statistical attributes of the density of error. Our results demonstrate the effectiveness of this approach for localizing irregular patterns in the trajectory of vessel movements.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.