Pattern reconstruction through generalized eigenvectors on defective networks

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
EPL Pub Date : 2023-10-01 DOI:10.1209/0295-5075/acfbad
Marie Dorchain, Riccardo Muolo, Timoteo Carletti
{"title":"Pattern reconstruction through generalized eigenvectors on defective networks","authors":"Marie Dorchain, Riccardo Muolo, Timoteo Carletti","doi":"10.1209/0295-5075/acfbad","DOIUrl":null,"url":null,"abstract":"Abstract Self-organization in natural and engineered systems causes the emergence of ordered spatio-temporal motifs. In the presence of diffusive species, Turing theory has been widely used to understand the formation of such patterns on continuous domains obtained from a diffusion-driven instability mechanism. The theory was later extended to networked systems, where the reaction processes occur locally (in the nodes), while diffusion takes place through the networks links. The condition for the instability onset relies on the spectral property of the Laplace matrix, i.e. , the diffusive operator, and in particular on the existence of an eigenbasis. In this work, we make one step forward and we prove the validity of Turing idea also in the case of a network with a defective Laplace matrix. Moreover, by using both eigenvectors and generalized eigenvectors we show that we can reconstruct the asymptotic pattern with a relatively small discrepancy. Because a large majority of empirical networks is non-normal and often defective, our results pave the way for a thorough understanding of self-organization in real-world systems.","PeriodicalId":11738,"journal":{"name":"EPL","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1209/0295-5075/acfbad","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract Self-organization in natural and engineered systems causes the emergence of ordered spatio-temporal motifs. In the presence of diffusive species, Turing theory has been widely used to understand the formation of such patterns on continuous domains obtained from a diffusion-driven instability mechanism. The theory was later extended to networked systems, where the reaction processes occur locally (in the nodes), while diffusion takes place through the networks links. The condition for the instability onset relies on the spectral property of the Laplace matrix, i.e. , the diffusive operator, and in particular on the existence of an eigenbasis. In this work, we make one step forward and we prove the validity of Turing idea also in the case of a network with a defective Laplace matrix. Moreover, by using both eigenvectors and generalized eigenvectors we show that we can reconstruct the asymptotic pattern with a relatively small discrepancy. Because a large majority of empirical networks is non-normal and often defective, our results pave the way for a thorough understanding of self-organization in real-world systems.
缺陷网络上基于广义特征向量的模式重构
自然和工程系统中的自组织导致有序时空基元的出现。在扩散种存在的情况下,图灵理论已被广泛用于理解从扩散驱动的不稳定机制中获得的连续域上这种图案的形成。该理论后来被扩展到网络系统,其中反应过程发生在局部(在节点中),而扩散则通过网络链接进行。不稳定开始的条件依赖于拉普拉斯矩阵的谱性质,即扩散算子,特别是依赖于特征基的存在。在这项工作中,我们向前迈进了一步,我们也证明了图灵思想在具有缺陷拉普拉斯矩阵的网络中的有效性。此外,通过使用特征向量和广义特征向量,我们证明了我们可以用相对较小的差异重建渐近模式。因为绝大多数经验网络是非正常的,而且经常有缺陷,我们的结果为彻底理解现实世界系统中的自组织铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
EPL
EPL 物理-物理:综合
CiteScore
3.30
自引率
5.60%
发文量
332
审稿时长
1.9 months
期刊介绍: General physics – physics of elementary particles and fields – nuclear physics – atomic, molecular and optical physics – classical areas of phenomenology – physics of gases, plasmas and electrical discharges – condensed matter – cross-disciplinary physics and related areas of science and technology. Letters submitted to EPL should contain new results, ideas, concepts, experimental methods, theoretical treatments, including those with application potential and be of broad interest and importance to one or several sections of the physics community. The presentation should satisfy the specialist, yet remain understandable to the researchers in other fields through a suitable, clearly written introduction and conclusion (if appropriate). EPL also publishes Comments on Letters previously published in the Journal.
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信