Generalized Hausdorff operator on Bergmann spaces

IF 0.3 Q4 MATHEMATICS
Sasikala Perumal, Kalaivani Kamalakkannan
{"title":"Generalized Hausdorff operator on Bergmann spaces","authors":"Sasikala Perumal, Kalaivani Kamalakkannan","doi":"10.1515/conop-2023-0101","DOIUrl":null,"url":null,"abstract":"Abstract In this article, we considered the generalized Hausdorff operator <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ϕ</m:mi> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> </m:msub> </m:math> {{\\mathcal{ {\\mathcal H} }}}_{\\mu ,\\phi ,a} on Bergmann space and determined the conditions on <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>ϕ</m:mi> </m:math> \\phi and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>a</m:mi> </m:math> a so that the operator is bounded. In addition, we studied the action of the Hausdorff operator on the truncated domain to estimate norm <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi class=\"MJX-tex-caligraphic\" mathvariant=\"script\">ℋ</m:mi> </m:mrow> <m:mrow> <m:mi>μ</m:mi> <m:mo>,</m:mo> <m:mi>ϕ</m:mi> <m:mo>,</m:mo> <m:mi>a</m:mi> </m:mrow> </m:msub> </m:math> {{\\mathcal{ {\\mathcal H} }}}_{\\mu ,\\phi ,a} and established a relation with quasi-Hausdorff operator on Bergmann space.","PeriodicalId":53800,"journal":{"name":"Concrete Operators","volume":"51 1","pages":"0"},"PeriodicalIF":0.3000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concrete Operators","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/conop-2023-0101","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this article, we considered the generalized Hausdorff operator μ , ϕ , a {{\mathcal{ {\mathcal H} }}}_{\mu ,\phi ,a} on Bergmann space and determined the conditions on ϕ \phi and a a so that the operator is bounded. In addition, we studied the action of the Hausdorff operator on the truncated domain to estimate norm μ , ϕ , a {{\mathcal{ {\mathcal H} }}}_{\mu ,\phi ,a} and established a relation with quasi-Hausdorff operator on Bergmann space.
Bergmann空间上的广义Hausdorff算子
摘要本文考虑上广义Hausdorff算子h μ, φ,a {{\mathcal{ {\mathcal H} }}} _ {\mu, \phi,a,并确定了算子在φ }\phi和a a上的有界条件。此外,我们研究了Hausdorff算子在截断域上估计模态h μ, φ,a {{\mathcal{ {\mathcal H} }}} _ {\mu, \phi,a的作用,}并在Bergmann空间上建立了与拟Hausdorff算子的关系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Concrete Operators
Concrete Operators MATHEMATICS-
CiteScore
1.00
自引率
16.70%
发文量
10
审稿时长
22 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信