{"title":"Constraint Energy Minimizing Generalized Multiscale Finite Element Method for Convection Diffusion Equation","authors":"Lina Zhao, Eric Chung","doi":"10.1137/22m1487655","DOIUrl":null,"url":null,"abstract":"In this paper we present and analyze a constraint energy minimizing generalized multiscale finite element method for convection diffusion equations. To define the multiscale basis functions, we first build an auxiliary multiscale space by solving local spectral problems motivated by analysis. Then a constraint energy minimization performed in the oversampling domains is exploited to construct the multiscale space. The resulting multiscale basis functions have a good decay property even for high contrast diffusion and convection coefficients. Furthermore, if the number of oversampling layers is chosen properly, we can prove that the convergence rate is proportional to the coarse meshsize. Our analysis also indicates that the size of the oversampling domain weakly depends on the contrast of the heterogeneous coefficients. Several numerical experiments are presented illustrating the performance of our method.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2023-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/22m1487655","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper we present and analyze a constraint energy minimizing generalized multiscale finite element method for convection diffusion equations. To define the multiscale basis functions, we first build an auxiliary multiscale space by solving local spectral problems motivated by analysis. Then a constraint energy minimization performed in the oversampling domains is exploited to construct the multiscale space. The resulting multiscale basis functions have a good decay property even for high contrast diffusion and convection coefficients. Furthermore, if the number of oversampling layers is chosen properly, we can prove that the convergence rate is proportional to the coarse meshsize. Our analysis also indicates that the size of the oversampling domain weakly depends on the contrast of the heterogeneous coefficients. Several numerical experiments are presented illustrating the performance of our method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.