Modeling and analysis of electromechanical automatic leveling mechanism for high-mobility vehicle-mounted theodolites

IF 0.4 4区 计算机科学 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Xiangyu LI, Ping RUAN, Wei HAO, Meilin XIE, Tao LV
{"title":"Modeling and analysis of electromechanical automatic leveling mechanism for high-mobility vehicle-mounted theodolites","authors":"Xiangyu LI, Ping RUAN, Wei HAO, Meilin XIE, Tao LV","doi":"10.1587/transfun.2023eap1058","DOIUrl":null,"url":null,"abstract":"To achieve precise measurement without landing, the high-mobility vehicle-mounted theodolite needs to be leveled quickly with high precision and ensure sufficient support stability before work. After the measurement, it is also necessary to ensure that the high-mobility vehicle-mounted theodolite can be quickly withdrawn. Therefore, this paper proposes a hierarchical automatic leveling strategy and establishes a two-stage electromechanical automatic leveling mechanism model. Using coarse leveling of the first-stage automatic leveling mechanism and fine leveling of the second-stage automatic leveling mechanism, the model realizes high-precision and fast leveling of the vehicle-mounted theodolites. Then, the leveling control method based on repeated positioning is proposed for the first-stage automatic leveling mechanism. To realize the rapid withdrawal for high-mobility vehicle-mounted theodolites, the method ensures the coincidence of spatial movement paths when the structural parts are unfolded and withdrawn. Next, the leg static balance equation is constructed in the leveling state, and the support force detection method is discussed in realizing the stable support for vehicle-mounted theodolites. Furthermore, a mathematical model for “false leg” detection is established furtherly, and a “false leg” detection scheme based on the support force detection method is analyzed to significantly improve the support stability of vehicle-mounted theodolites. Finally, an experimental platform is constructed to perform the performance test for automatic leveling mechanisms. The experimental results show that the leveling accuracy of established two-stage electromechanical automatic leveling mechanism can reach 3.6″, and the leveling time is no more than 2 mins. The maximum support force error of the support force detection method is less than 15%, and the average support force error is less than 10%. In contrast, the maximum support force error of the drive motor torque detection method reaches 80.12%, and its leg support stability is much less than the support force detection method. The model and analysis method proposed in this paper can also be used for vehicle-mounted radar, vehicle-mounted laser measurement devices, vehicle-mounted artillery launchers and other types of vehicle-mounted equipment with high-precision and high-mobility working requirements.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":"134 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2023eap1058","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

To achieve precise measurement without landing, the high-mobility vehicle-mounted theodolite needs to be leveled quickly with high precision and ensure sufficient support stability before work. After the measurement, it is also necessary to ensure that the high-mobility vehicle-mounted theodolite can be quickly withdrawn. Therefore, this paper proposes a hierarchical automatic leveling strategy and establishes a two-stage electromechanical automatic leveling mechanism model. Using coarse leveling of the first-stage automatic leveling mechanism and fine leveling of the second-stage automatic leveling mechanism, the model realizes high-precision and fast leveling of the vehicle-mounted theodolites. Then, the leveling control method based on repeated positioning is proposed for the first-stage automatic leveling mechanism. To realize the rapid withdrawal for high-mobility vehicle-mounted theodolites, the method ensures the coincidence of spatial movement paths when the structural parts are unfolded and withdrawn. Next, the leg static balance equation is constructed in the leveling state, and the support force detection method is discussed in realizing the stable support for vehicle-mounted theodolites. Furthermore, a mathematical model for “false leg” detection is established furtherly, and a “false leg” detection scheme based on the support force detection method is analyzed to significantly improve the support stability of vehicle-mounted theodolites. Finally, an experimental platform is constructed to perform the performance test for automatic leveling mechanisms. The experimental results show that the leveling accuracy of established two-stage electromechanical automatic leveling mechanism can reach 3.6″, and the leveling time is no more than 2 mins. The maximum support force error of the support force detection method is less than 15%, and the average support force error is less than 10%. In contrast, the maximum support force error of the drive motor torque detection method reaches 80.12%, and its leg support stability is much less than the support force detection method. The model and analysis method proposed in this paper can also be used for vehicle-mounted radar, vehicle-mounted laser measurement devices, vehicle-mounted artillery launchers and other types of vehicle-mounted equipment with high-precision and high-mobility working requirements.
高机动车载经纬仪机电自动调平机构建模与分析
为了实现不着陆的精确测量,高机动车载经纬仪在工作前需要快速、高精度地调平,并保证足够的支撑稳定性。测量结束后,还需要保证高机动性车载经纬仪能够快速撤回。为此,本文提出了一种分层自动调平策略,并建立了两阶段机电自动调平机构模型。利用第一级自动调平机构的粗调平和第二级自动调平机构的精调平,实现了车载经纬仪的高精度、快速调平。然后,提出了基于重复定位的一级自动调平机构调平控制方法。为实现高机动性车载经纬仪的快速收回,该方法保证了结构件展开和收回时空间运动路径的一致性。其次,建立了调平状态下的腿静平衡方程,讨论了实现车载经纬仪稳定支撑的支撑力检测方法。进一步建立了“假腿”检测的数学模型,分析了基于支撑力检测方法的“假腿”检测方案,显著提高了车载经纬仪的支撑稳定性。最后搭建了实验平台,对自动调平机构进行了性能测试。实验结果表明,所建立的两级机电自动调平机构调平精度可达3.6″,调平时间不大于2 min。该支撑力检测方法的最大支撑力误差小于15%,平均支撑力误差小于10%。相比之下,驱动电机扭矩检测法的最大支撑力误差达到80.12%,其支腿的支撑稳定性远低于支撑力检测法。本文提出的模型和分析方法也可用于车载雷达、车载激光测量装置、车载火炮发射装置等具有高精度、高机动性工作要求的车载设备。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.10
自引率
20.00%
发文量
137
审稿时长
3.9 months
期刊介绍: Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry: (1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments. (2) Reports on development of measurement technology and various applied technologies. (3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc. (4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信