Ammar Babiker, Ebtihaj Abu-Elgasim, Mashair Mohammed
{"title":"Numerical Analysis of the Dynamic Tensile Behavior of Cement-Based Materials using a Gravity-Driven Hopkinson Tension Bar","authors":"Ammar Babiker, Ebtihaj Abu-Elgasim, Mashair Mohammed","doi":"10.1590/1679-78257483","DOIUrl":null,"url":null,"abstract":"Dynamic characterization of cement-based composites is crucial for understanding material behavior. When exposed to highly dynamic loading conditions, the strain-rate dependence of material causes the material response to differ significantly from that under quasi-static loading conditions. In this paper, a numerical investigation on the dynamic tensile behavior of cement-based materials. A gravitational split Hopkinson tension bar was used to characterize the dynamic tensile behavior of cement-based at high strain-rates. The commercial finite element software LS-Dyna is adopted to conduct the computations. The material specifications of cement-based are characterized by the Karagozian & Case (K&C) concrete model that accounts for shear dilation, strain-rate dependence, and strain softening. The model accuracy is verified with available experimental results in the form of strain signals, strain-rates, and tensile strengths. It was found that the results computed with the automatic generation version of K&C are slightly different from the experimental ones. Therefore, to achieve better agreement, the model was extended by calibrating a few parameters of the K&C material formulation. Finally, the simulation predictions were found to represent the experimental results with good agreement.","PeriodicalId":49021,"journal":{"name":"Latin American Journal of Solids and Structures","volume":"15 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Latin American Journal of Solids and Structures","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1590/1679-78257483","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic characterization of cement-based composites is crucial for understanding material behavior. When exposed to highly dynamic loading conditions, the strain-rate dependence of material causes the material response to differ significantly from that under quasi-static loading conditions. In this paper, a numerical investigation on the dynamic tensile behavior of cement-based materials. A gravitational split Hopkinson tension bar was used to characterize the dynamic tensile behavior of cement-based at high strain-rates. The commercial finite element software LS-Dyna is adopted to conduct the computations. The material specifications of cement-based are characterized by the Karagozian & Case (K&C) concrete model that accounts for shear dilation, strain-rate dependence, and strain softening. The model accuracy is verified with available experimental results in the form of strain signals, strain-rates, and tensile strengths. It was found that the results computed with the automatic generation version of K&C are slightly different from the experimental ones. Therefore, to achieve better agreement, the model was extended by calibrating a few parameters of the K&C material formulation. Finally, the simulation predictions were found to represent the experimental results with good agreement.