{"title":"Transforming lung cancer care: Synergizing artificial intelligence and clinical expertise for precision diagnosis and treatment","authors":"Meiling Sun, Changlei Cui","doi":"10.3934/bioeng.2023020","DOIUrl":null,"url":null,"abstract":"<abstract> <p>Lung cancer is a predominant cause of global cancer-related mortality, highlighting the urgent need for enhanced diagnostic and therapeutic modalities. With the integration of artificial intelligence (AI) into clinical practice, a new horizon in lung cancer care has emerged, characterized by precision in both diagnosis and treatment. This review delves into AI's transformative role in this domain. We elucidate AI's significant contributions to imaging, pathology, and genomic diagnostics, underscoring its potential to revolutionize early detection and accurate categorization of the disease. Shifting the focus to treatment, we spotlight AI's synergistic role in tailoring patient-centric therapies, predicting therapeutic outcomes, and propelling drug research and development. By harnessing the combined prowess of AI and clinical expertise, there's potential for a seismic shift in the lung cancer care paradigm, promising more precise, individualized interventions, and ultimately, improved survival rates for patients.</p> </abstract>","PeriodicalId":45029,"journal":{"name":"AIMS Bioengineering","volume":"1 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"AIMS Bioengineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3934/bioeng.2023020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Lung cancer is a predominant cause of global cancer-related mortality, highlighting the urgent need for enhanced diagnostic and therapeutic modalities. With the integration of artificial intelligence (AI) into clinical practice, a new horizon in lung cancer care has emerged, characterized by precision in both diagnosis and treatment. This review delves into AI's transformative role in this domain. We elucidate AI's significant contributions to imaging, pathology, and genomic diagnostics, underscoring its potential to revolutionize early detection and accurate categorization of the disease. Shifting the focus to treatment, we spotlight AI's synergistic role in tailoring patient-centric therapies, predicting therapeutic outcomes, and propelling drug research and development. By harnessing the combined prowess of AI and clinical expertise, there's potential for a seismic shift in the lung cancer care paradigm, promising more precise, individualized interventions, and ultimately, improved survival rates for patients.