Maha Mahmood, Farah Maath Jasem, Abdulrahman Abbas Mukhlif, Belal AL-Khateeb
{"title":"Classifying cuneiform symbols using machine learning algorithms with unigram features on a balanced dataset","authors":"Maha Mahmood, Farah Maath Jasem, Abdulrahman Abbas Mukhlif, Belal AL-Khateeb","doi":"10.1515/jisys-2023-0087","DOIUrl":null,"url":null,"abstract":"Abstract Problem Recognizing written languages using symbols written in cuneiform is a tough endeavor due to the lack of information and the challenge of the process of tokenization. The Cuneiform Language Identification (CLI) dataset attempts to understand seven cuneiform languages and dialects, including Sumerian and six dialects of the Akkadian language: Old Babylonian, Middle Babylonian Peripheral, Standard Babylonian, Neo-Babylonian, Late Babylonian, and Neo-Assyrian. However, this dataset suffers from the problem of imbalanced categories. Aim Therefore, this article aims to build a system capable of distinguishing between several cuneiform languages and solving the problem of unbalanced categories in the CLI dataset. Methods Oversampling technique was used to balance the dataset, and the performance of machine learning algorithms such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), and deep learning such as deep neural networks (DNNs) using the unigram feature extraction method was investigated. Results The proposed method using machine learning algorithms (SVM, KNN, DT, and RF) on a balanced dataset obtained an accuracy of 88.15, 88.14, 94.13, and 95.46%, respectively, while the DNN model got an accuracy of 93%. This proves improved performance compared to related works. Conclusion This proves the improvement of classifiers when working on a balanced dataset. The use of unigram features also showed an improvement in the performance of the classifier as it reduced the size of the data and accelerated the processing process.","PeriodicalId":46139,"journal":{"name":"Journal of Intelligent Systems","volume":"31 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/jisys-2023-0087","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Problem Recognizing written languages using symbols written in cuneiform is a tough endeavor due to the lack of information and the challenge of the process of tokenization. The Cuneiform Language Identification (CLI) dataset attempts to understand seven cuneiform languages and dialects, including Sumerian and six dialects of the Akkadian language: Old Babylonian, Middle Babylonian Peripheral, Standard Babylonian, Neo-Babylonian, Late Babylonian, and Neo-Assyrian. However, this dataset suffers from the problem of imbalanced categories. Aim Therefore, this article aims to build a system capable of distinguishing between several cuneiform languages and solving the problem of unbalanced categories in the CLI dataset. Methods Oversampling technique was used to balance the dataset, and the performance of machine learning algorithms such as Support Vector Machine (SVM), K-Nearest Neighbors (KNN), Decision Tree (DT), Random Forest (RF), and deep learning such as deep neural networks (DNNs) using the unigram feature extraction method was investigated. Results The proposed method using machine learning algorithms (SVM, KNN, DT, and RF) on a balanced dataset obtained an accuracy of 88.15, 88.14, 94.13, and 95.46%, respectively, while the DNN model got an accuracy of 93%. This proves improved performance compared to related works. Conclusion This proves the improvement of classifiers when working on a balanced dataset. The use of unigram features also showed an improvement in the performance of the classifier as it reduced the size of the data and accelerated the processing process.
期刊介绍:
The Journal of Intelligent Systems aims to provide research and review papers, as well as Brief Communications at an interdisciplinary level, with the field of intelligent systems providing the focal point. This field includes areas like artificial intelligence, models and computational theories of human cognition, perception and motivation; brain models, artificial neural nets and neural computing. It covers contributions from the social, human and computer sciences to the analysis and application of information technology.