{"title":"Input Data Format for Sparse Matrix in Quantum Annealing Emulator","authors":"Sohei SHIMOMAI, Kei UEDA, Shinji KIMURA","doi":"10.1587/transfun.2023vlp0002","DOIUrl":null,"url":null,"abstract":"Recently, Quantum Annealing (QA) has attracted attention as an efficient algorithm for combinatorial optimization problems. In QA, the input data size becomes large and its reduction is important for accelerating by the hardware emulation since the usable memory size and its bandwidth are limited. The paper proposes the compression method of input sparse matrices for QA emulator. The proposed method uses the sparseness of the coefficient matrix and the reappearance of the same values. An independent table is introduced and data are compressed by the search and registration method of two consecutive data in the value table. The proposed method is applied to Traveling Salesman Problem (TSP) with 32, 64 and 96 cities and Nurse Scheduling Problem (NSP). The proposed method could reduce the amount of data by 1/40 for 96 city TSP and could manage 96 city TSP on the hardware emulator. When applied to NSP, we confirmed the effectiveness of the proposed method by the compression ratio ranging from 1/4 to 1/11.8. The data reduction is also useful for the simulation/emulation performance when using the compressed data directly and 1.9 times faster speed can be found on 96 city TSP than the CSR-based method.","PeriodicalId":55003,"journal":{"name":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","volume":"23 1","pages":"0"},"PeriodicalIF":0.4000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ieice Transactions on Fundamentals of Electronics Communications and Computer Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1587/transfun.2023vlp0002","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Recently, Quantum Annealing (QA) has attracted attention as an efficient algorithm for combinatorial optimization problems. In QA, the input data size becomes large and its reduction is important for accelerating by the hardware emulation since the usable memory size and its bandwidth are limited. The paper proposes the compression method of input sparse matrices for QA emulator. The proposed method uses the sparseness of the coefficient matrix and the reappearance of the same values. An independent table is introduced and data are compressed by the search and registration method of two consecutive data in the value table. The proposed method is applied to Traveling Salesman Problem (TSP) with 32, 64 and 96 cities and Nurse Scheduling Problem (NSP). The proposed method could reduce the amount of data by 1/40 for 96 city TSP and could manage 96 city TSP on the hardware emulator. When applied to NSP, we confirmed the effectiveness of the proposed method by the compression ratio ranging from 1/4 to 1/11.8. The data reduction is also useful for the simulation/emulation performance when using the compressed data directly and 1.9 times faster speed can be found on 96 city TSP than the CSR-based method.
期刊介绍:
Includes reports on research, developments, and examinations performed by the Society''s members for the specific fields shown in the category list such as detailed below, the contents of which may advance the development of science and industry:
(1) Reports on new theories, experiments with new contents, or extensions of and supplements to conventional theories and experiments.
(2) Reports on development of measurement technology and various applied technologies.
(3) Reports on the planning, design, manufacture, testing, or operation of facilities, machinery, parts, materials, etc.
(4) Presentation of new methods, suggestion of new angles, ideas, systematization, software, or any new facts regarding the above.