Dynamic Properties of Radioelectronic Elements in the Form of Piezoceramic Cylinders with Internal Screens

Q3 Physics and Astronomy
O. H. Leiko, A. V. Derepa, O. V. Bogdanov, V. V. Kolesnyk
{"title":"Dynamic Properties of Radioelectronic Elements in the Form of Piezoceramic Cylinders with Internal Screens","authors":"O. H. Leiko, A. V. Derepa, O. V. Bogdanov, V. V. Kolesnyk","doi":"10.21272/jnep.15(4).04036","DOIUrl":null,"url":null,"abstract":"Analytical relations describing the electric fields of a radio-electronic element made in the form of a piezoceramic cylindrical shell with an internal acoustic screen and an elastic medium in the cavity between them are obtained by the method of coupled fields in multiply connected regions. A comparative analysis of the results of a numerical experiment carried out according to the frequency characteristics of the electric current of the element excitation, depending on the parameters of the design of constituents of the element, made it possible to establish a number of subtle effects in the formation of fields that are important for matching the element with the electronic generator that excites it. Possible ways to control the dynamic properties of the electric field of the transducer are determined for different compositions of the piezoceramic material of its shell and different distances between the screen and the shell. The ways of controlling the properties of the electric field of the transducer are determined, which include changes in the composition of the piezoceramic material of its shell, the dimensions of the inner screen and the distance between the screen and the shell. The results obtained make it possible to support the requirements for generator devices to ensure the energy efficiency of the corresponding radiating paths.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(4).04036","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Analytical relations describing the electric fields of a radio-electronic element made in the form of a piezoceramic cylindrical shell with an internal acoustic screen and an elastic medium in the cavity between them are obtained by the method of coupled fields in multiply connected regions. A comparative analysis of the results of a numerical experiment carried out according to the frequency characteristics of the electric current of the element excitation, depending on the parameters of the design of constituents of the element, made it possible to establish a number of subtle effects in the formation of fields that are important for matching the element with the electronic generator that excites it. Possible ways to control the dynamic properties of the electric field of the transducer are determined for different compositions of the piezoceramic material of its shell and different distances between the screen and the shell. The ways of controlling the properties of the electric field of the transducer are determined, which include changes in the composition of the piezoceramic material of its shell, the dimensions of the inner screen and the distance between the screen and the shell. The results obtained make it possible to support the requirements for generator devices to ensure the energy efficiency of the corresponding radiating paths.
带内屏的压电陶瓷圆柱体中放射性电子元件的动态特性
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信