Modeling the Destruction of the p-n Junction by Electromagnetic Pulses

Q3 Physics and Astronomy
D. Sergeyev, K. Shunkeyev, N. Zhanturina, A. L. Solovjov
{"title":"Modeling the Destruction of the p-n Junction by Electromagnetic Pulses","authors":"D. Sergeyev, K. Shunkeyev, N. Zhanturina, A. L. Solovjov","doi":"10.21272/jnep.15(4).04033","DOIUrl":null,"url":null,"abstract":"Within the framework of the density functional theory and methods of molecular dynamics, the process of destruction of a silicon p-n junction at the influence of an electromagnetic pulse (thermal effect) is considered. With an increase in the amplitude of the electromagnetic pulse, a nonlinearity of the mobility of quasiparticles arises and impact ionization processes occur, leading to the formation of various defects in the crystal lattice of the semiconductor. The evolution of the occurrence of point defects in a semiconductor by thermal deformation, as well as a further increase in their concentration, is shown. It is demonstrated that the primary passage of an electromagnetic pulse generates defects in a defect-free crystal. Further thermal impact of the pulse leads to an increase in the deviation of atoms, leading to the accumulation of defects and the destruction of the structure. With an increase in temperature, the p-n junction loses its rectifying properties and an instantaneous increase in the magnitude of the reverse current is observed due to the occurrence of an ionization current, which coincides in direction with the saturation current. It is revealed that thermal deformation significantly distorts the p-n junction profile. It was found that the destruction of the semiconductor structure occurs in the defect-free part of the crystal, and the defects stimulate destruction. In semiconductors doped with Li or Sr, the destruction time of the p-n junction increases due to the occupation of mobile Li or Sr ions by the formed silicon vacancies during the thermal action of the pulse. The results obtained can be useful in the development of semiconductor structures resistant to external influences of an electromagnetic pulse.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(4).04033","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Within the framework of the density functional theory and methods of molecular dynamics, the process of destruction of a silicon p-n junction at the influence of an electromagnetic pulse (thermal effect) is considered. With an increase in the amplitude of the electromagnetic pulse, a nonlinearity of the mobility of quasiparticles arises and impact ionization processes occur, leading to the formation of various defects in the crystal lattice of the semiconductor. The evolution of the occurrence of point defects in a semiconductor by thermal deformation, as well as a further increase in their concentration, is shown. It is demonstrated that the primary passage of an electromagnetic pulse generates defects in a defect-free crystal. Further thermal impact of the pulse leads to an increase in the deviation of atoms, leading to the accumulation of defects and the destruction of the structure. With an increase in temperature, the p-n junction loses its rectifying properties and an instantaneous increase in the magnitude of the reverse current is observed due to the occurrence of an ionization current, which coincides in direction with the saturation current. It is revealed that thermal deformation significantly distorts the p-n junction profile. It was found that the destruction of the semiconductor structure occurs in the defect-free part of the crystal, and the defects stimulate destruction. In semiconductors doped with Li or Sr, the destruction time of the p-n junction increases due to the occupation of mobile Li or Sr ions by the formed silicon vacancies during the thermal action of the pulse. The results obtained can be useful in the development of semiconductor structures resistant to external influences of an electromagnetic pulse.
电磁脉冲对pn结破坏的模拟
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信