Modeling a Square Slotted Antenna for 5G Applications using an Equivalent Circuit Approach

Q3 Physics and Astronomy
Nabil Meskini, Bilal Aghoutane, Houda Hiddar, Tanvir Islam, Mohammed El Ghzaoui, Hanan El Faylali
{"title":"Modeling a Square Slotted Antenna for 5G Applications using an Equivalent Circuit Approach","authors":"Nabil Meskini, Bilal Aghoutane, Houda Hiddar, Tanvir Islam, Mohammed El Ghzaoui, Hanan El Faylali","doi":"10.21272/jnep.15(4).04030","DOIUrl":null,"url":null,"abstract":"The emergence of 5G technology is expected to significantly impact high-bandwidth wireless applications, making efficient antenna designs essential. This research paper presents an equivalent circuit for a square-slotted patch antenna design for 5G cellular applications. Indeed, the equivalent circuit for an antenna can be represented by a simple circuit model, such as a resonant LC circuit or a transmission line model. These models can be used to determine the resonance frequency, bandwidth, and radiation pattern of the antenna. Matching networks can also be designed using the equivalent circuit to match the antenna and receiver impedances. This analysis of the antenna can offer valuable insights into its behavior, serving as a foundation for a more extensive investigation. The antenna has been designed and simulated on an FR4 substrate featuring a relative permittivity  r of 4.3, and it is sized at 4.5  5.2  0.3 mm 3 . In the proposed design, a 50  microstrip line feeds a square-slotted radiating patch, and power dividers join the two elements. As part of 5G technology, it is crucial to achieve high bandwidth with reduced losses and improved gains. This study employs AWR and HFSS to simulate and design the square-slotted microstrip patch antenna, and in terms of gain and S 11 , the results are compared. The proposed design has the potential to contribute to the development of high-performance 5G antenna systems.","PeriodicalId":16654,"journal":{"name":"Journal of Nano-and electronic Physics","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nano-and electronic Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21272/jnep.15(4).04030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of 5G technology is expected to significantly impact high-bandwidth wireless applications, making efficient antenna designs essential. This research paper presents an equivalent circuit for a square-slotted patch antenna design for 5G cellular applications. Indeed, the equivalent circuit for an antenna can be represented by a simple circuit model, such as a resonant LC circuit or a transmission line model. These models can be used to determine the resonance frequency, bandwidth, and radiation pattern of the antenna. Matching networks can also be designed using the equivalent circuit to match the antenna and receiver impedances. This analysis of the antenna can offer valuable insights into its behavior, serving as a foundation for a more extensive investigation. The antenna has been designed and simulated on an FR4 substrate featuring a relative permittivity  r of 4.3, and it is sized at 4.5  5.2  0.3 mm 3 . In the proposed design, a 50  microstrip line feeds a square-slotted radiating patch, and power dividers join the two elements. As part of 5G technology, it is crucial to achieve high bandwidth with reduced losses and improved gains. This study employs AWR and HFSS to simulate and design the square-slotted microstrip patch antenna, and in terms of gain and S 11 , the results are compared. The proposed design has the potential to contribute to the development of high-performance 5G antenna systems.
使用等效电路方法对5G应用中的方形开槽天线进行建模
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Nano-and electronic Physics
Journal of Nano-and electronic Physics Materials Science-Materials Science (all)
CiteScore
1.40
自引率
0.00%
发文量
69
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信