Pascal Paulus, Yannick Ruppert, Michael Vielhaber, Juergen Griebsch
{"title":"Prediction of single track clad quality in laser metal deposition using dissimilar materials: Comparison of machine learning-based approaches","authors":"Pascal Paulus, Yannick Ruppert, Michael Vielhaber, Juergen Griebsch","doi":"10.2351/7.0001108","DOIUrl":null,"url":null,"abstract":"Powder-based laser metal deposition (LMD) offers a promising additive manufacturing process, given the large number of available materials for cladding or generative applications. In laser cladding of dissimilar materials, it is necessary to control the mixing of substrate and additive in the interaction zone to ensure safe metallurgical bonding while avoiding critical chemical compositions that lead to undesired phase precipitation. However, the generation of empirical data for LMD process development is very challenging and time-consuming. In this context, different machine learning models are examined to identify whether they can converge with a small amount of empirical data. In this work, the prediction accuracy of back propagation neural network (BPNN), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) was compared using mean squared error (MSE) and mean absolute percentage error (MAPE). A hyperparameter optimization was performed for each model. The materials used are 316L as the substrate and VDM Alloy 780 as the additive. The dataset used consists of 40 empirically determined values. The input parameters are laser power, feed rate, and powder mass flow rate. The quality characteristics of height, width, dilution, Fe-amount, and seam contour are defined as outputs. As a result, the predictions were compared with retained validation data and described as MSE and MAPE to determine the prediction accuracy for the models. BPNN achieved a prediction accuracy of 0.0072 MSE and 4.37% MAPE and XGBoost of 0.0084 MSE and 6.34% MAPE. The most accurate prediction was achieved by LSTM with 0.0053 MSE and 3.75% MAPE.","PeriodicalId":50168,"journal":{"name":"Journal of Laser Applications","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Laser Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2351/7.0001108","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Powder-based laser metal deposition (LMD) offers a promising additive manufacturing process, given the large number of available materials for cladding or generative applications. In laser cladding of dissimilar materials, it is necessary to control the mixing of substrate and additive in the interaction zone to ensure safe metallurgical bonding while avoiding critical chemical compositions that lead to undesired phase precipitation. However, the generation of empirical data for LMD process development is very challenging and time-consuming. In this context, different machine learning models are examined to identify whether they can converge with a small amount of empirical data. In this work, the prediction accuracy of back propagation neural network (BPNN), long short-term memory (LSTM), and extreme gradient boosting (XGBoost) was compared using mean squared error (MSE) and mean absolute percentage error (MAPE). A hyperparameter optimization was performed for each model. The materials used are 316L as the substrate and VDM Alloy 780 as the additive. The dataset used consists of 40 empirically determined values. The input parameters are laser power, feed rate, and powder mass flow rate. The quality characteristics of height, width, dilution, Fe-amount, and seam contour are defined as outputs. As a result, the predictions were compared with retained validation data and described as MSE and MAPE to determine the prediction accuracy for the models. BPNN achieved a prediction accuracy of 0.0072 MSE and 4.37% MAPE and XGBoost of 0.0084 MSE and 6.34% MAPE. The most accurate prediction was achieved by LSTM with 0.0053 MSE and 3.75% MAPE.
期刊介绍:
The Journal of Laser Applications (JLA) is the scientific platform of the Laser Institute of America (LIA) and is published in cooperation with AIP Publishing. The high-quality articles cover a broad range from fundamental and applied research and development to industrial applications. Therefore, JLA is a reflection of the state-of-R&D in photonic production, sensing and measurement as well as Laser safety.
The following international and well known first-class scientists serve as allocated Editors in 9 new categories:
High Precision Materials Processing with Ultrafast Lasers
Laser Additive Manufacturing
High Power Materials Processing with High Brightness Lasers
Emerging Applications of Laser Technologies in High-performance/Multi-function Materials and Structures
Surface Modification
Lasers in Nanomanufacturing / Nanophotonics & Thin Film Technology
Spectroscopy / Imaging / Diagnostics / Measurements
Laser Systems and Markets
Medical Applications & Safety
Thermal Transportation
Nanomaterials and Nanoprocessing
Laser applications in Microelectronics.