{"title":"Surface gravity wave interaction with a submerged tunnel in the presence of a submerged wavy porous plate","authors":"Amar K Mohapatra, Trilochan Sahoo","doi":"10.1177/14750902231200156","DOIUrl":null,"url":null,"abstract":"The present study deals with the surface gravity wave interaction of a submerged composite wavy porous plate in the presence of a tunnel placed at a finite distance under the assumption of small amplitude theory and a two-dimensional framework. To solve the boundary value problem, a numerical method using the multi-domain boundary element method (MDBEM) is implemented. Hydrodynamic characteristics of interest such as reflection coefficient and transmission coefficient are computed and studied for a wide range of dimensionless wavenumber and relative plate lengths. Various parametric studies are conducted to emphasize the effect of structural parameters like the number of relative ripple wavelengths, relative ripple amplitude, and relative submergence depth. Dimensionless wave force coefficients acting on the plate and the tunnel are calculated and investigated. The study reveals that the presence of composite wavy porous plate has a significant effect in the mitigation of wave-exerted force on the tunnel. Optimized results are shown for the efficient design of coupled breakwater and tunnel models, which can be used beneficially to protect against the severity of wave action in similar applications of ocean engineering in marine environments.","PeriodicalId":20667,"journal":{"name":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","volume":"2014 1","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/14750902231200156","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
The present study deals with the surface gravity wave interaction of a submerged composite wavy porous plate in the presence of a tunnel placed at a finite distance under the assumption of small amplitude theory and a two-dimensional framework. To solve the boundary value problem, a numerical method using the multi-domain boundary element method (MDBEM) is implemented. Hydrodynamic characteristics of interest such as reflection coefficient and transmission coefficient are computed and studied for a wide range of dimensionless wavenumber and relative plate lengths. Various parametric studies are conducted to emphasize the effect of structural parameters like the number of relative ripple wavelengths, relative ripple amplitude, and relative submergence depth. Dimensionless wave force coefficients acting on the plate and the tunnel are calculated and investigated. The study reveals that the presence of composite wavy porous plate has a significant effect in the mitigation of wave-exerted force on the tunnel. Optimized results are shown for the efficient design of coupled breakwater and tunnel models, which can be used beneficially to protect against the severity of wave action in similar applications of ocean engineering in marine environments.
期刊介绍:
The Journal of Engineering for the Maritime Environment is concerned with the design, production and operation of engineering artefacts for the maritime environment. The journal straddles the traditional boundaries of naval architecture, marine engineering, offshore/ocean engineering, coastal engineering and port engineering.