Barycentric Interpolation Collocation Method for Solving Fractional Linear Fredholm-Volterra Integro-Differential Equation

IF 1.9 3区 数学 Q1 MATHEMATICS
Jin Li, Kaiyan Zhao, Xiaoning Su
{"title":"Barycentric Interpolation Collocation Method for Solving Fractional Linear Fredholm-Volterra Integro-Differential Equation","authors":"Jin Li, Kaiyan Zhao, Xiaoning Su","doi":"10.1155/2023/7918713","DOIUrl":null,"url":null,"abstract":"In this article, barycentric interpolation collocation method (BICM) is presented to solve the fractional linear Fredholm-Volterra integro-differential equation (FVIDE). Firstly, the fractional order term of equation is transformed into the Riemann integral with Caputo definition, and this integral term is approximated by the Gauss quadrature formula. Secondly, the barycentric interpolation basis function is used to approximate the unknown function, and the matrix equation of BICM is obtained. Finally, several numerical examples are given to solve one-dimensional differential equation.","PeriodicalId":15840,"journal":{"name":"Journal of Function Spaces","volume":"76 1","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Function Spaces","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2023/7918713","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, barycentric interpolation collocation method (BICM) is presented to solve the fractional linear Fredholm-Volterra integro-differential equation (FVIDE). Firstly, the fractional order term of equation is transformed into the Riemann integral with Caputo definition, and this integral term is approximated by the Gauss quadrature formula. Secondly, the barycentric interpolation basis function is used to approximate the unknown function, and the matrix equation of BICM is obtained. Finally, several numerical examples are given to solve one-dimensional differential equation.
求解分数阶线性Fredholm-Volterra积分微分方程的重心插值配点法
本文提出了求解分数阶线性Fredholm-Volterra积分微分方程的质心插值配置法(BICM)。首先,将方程的分数阶项转化为具有Caputo定义的Riemann积分,并用高斯正交公式对该积分项进行近似。其次,利用质心插值基函数逼近未知函数,得到BICM的矩阵方程;最后给出了求解一维微分方程的数值算例。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Function Spaces
Journal of Function Spaces MATHEMATICS, APPLIEDMATHEMATICS -MATHEMATICS
CiteScore
4.10
自引率
10.50%
发文量
451
审稿时长
15 weeks
期刊介绍: Journal of Function Spaces (formerly titled Journal of Function Spaces and Applications) publishes papers on all aspects of function spaces, functional analysis, and their employment across other mathematical disciplines. As well as original research, Journal of Function Spaces also publishes focused review articles that assess the state of the art, and identify upcoming challenges and promising solutions for the community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信