{"title":"Existence and non-existence results for a semilinear fractional Neumann problem","authors":"Eleonora Cinti, Francesca Colasuonno","doi":"10.1007/s00030-023-00886-4","DOIUrl":null,"url":null,"abstract":"Abstract We establish a priori $$L^\\infty $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msup> <mml:mi>L</mml:mi> <mml:mi>∞</mml:mi> </mml:msup> </mml:math> -estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $$0<s\\le 1/2$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mn>0</mml:mn> <mml:mo><</mml:mo> <mml:mi>s</mml:mi> <mml:mo>≤</mml:mo> <mml:mn>1</mml:mn> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> the analysis started in [7].","PeriodicalId":49747,"journal":{"name":"Nodea-Nonlinear Differential Equations and Applications","volume":null,"pages":null},"PeriodicalIF":1.1000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nodea-Nonlinear Differential Equations and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-023-00886-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 1
Abstract
Abstract We establish a priori $$L^\infty $$ L∞ -estimates for non-negative solutions of a semilinear nonlocal Neumann problem. As a consequence of these estimates, we get non-existence of non-constant solutions under suitable assumptions on the diffusion coefficient and on the nonlinearity. Moreover, we prove an existence result for radial, radially non-decreasing solutions in the case of a possible supercritical nonlinearity, extending to the case $$00<s≤1/2 the analysis started in [7].
期刊介绍:
Nonlinear Differential Equations and Applications (NoDEA) provides a forum for research contributions on nonlinear differential equations motivated by application to applied sciences.
The research areas of interest for NoDEA include, but are not limited to: deterministic and stochastic ordinary and partial differential equations, finite and infinite-dimensional dynamical systems, qualitative analysis of solutions, variational, topological and viscosity methods, mathematical control theory, complex dynamics and pattern formation, approximation and numerical aspects.