Enhanced MPPT-Based Fractional-Order PID for PV Systems Using Aquila Optimizer

Mohammed Tadj, Lakhdar Chaib, Abdelghani Choucha, Al-Motasem Aldaoudeyeh, Ahmed Fathy, Hegazy Rezk, Mohamed Louzazni, Attia El-Fergany
{"title":"Enhanced MPPT-Based Fractional-Order PID for PV Systems Using Aquila Optimizer","authors":"Mohammed Tadj, Lakhdar Chaib, Abdelghani Choucha, Al-Motasem Aldaoudeyeh, Ahmed Fathy, Hegazy Rezk, Mohamed Louzazni, Attia El-Fergany","doi":"10.3390/mca28050099","DOIUrl":null,"url":null,"abstract":"This paper proposes a controller to track the maximum power point (MPP) of a photovoltaic (PV) system using a fractional-order proportional integral derivative (FOPID) controller. The employed MPPT is operated based on a dp/dv feedback approach. The designed FOPID-MPPT method includes a differentiator of order (μ) and integrator of order (λ), meaning it is an extension of the conventional PID controller. FOPID has more flexibility and achieves dynamical tuning, which leads to an efficient control system. The contribution of our paper lies is optimizing FOPID-MPPT parameters using Aquila optimizer (AO). The obtained results with the proposed AO-based FOPID-MPPT are contrasted with those acquired with moth flame optimizer (MFO). The performance of our FOPID-MPPT controller with the conventional technique perturb and observe (P&O) and the classical PID controller is analyzed. In addition, a robustness test is used to assess the performance of the FOPID-MPPT controller under load variations, providing valuable insights into its practical applicability and robustness. The simulation results clearly prove the superiority and high performance of the proposed control system to track the MPP of PV systems.","PeriodicalId":352525,"journal":{"name":"Mathematical and Computational Applications","volume":"91 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical and Computational Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/mca28050099","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes a controller to track the maximum power point (MPP) of a photovoltaic (PV) system using a fractional-order proportional integral derivative (FOPID) controller. The employed MPPT is operated based on a dp/dv feedback approach. The designed FOPID-MPPT method includes a differentiator of order (μ) and integrator of order (λ), meaning it is an extension of the conventional PID controller. FOPID has more flexibility and achieves dynamical tuning, which leads to an efficient control system. The contribution of our paper lies is optimizing FOPID-MPPT parameters using Aquila optimizer (AO). The obtained results with the proposed AO-based FOPID-MPPT are contrasted with those acquired with moth flame optimizer (MFO). The performance of our FOPID-MPPT controller with the conventional technique perturb and observe (P&O) and the classical PID controller is analyzed. In addition, a robustness test is used to assess the performance of the FOPID-MPPT controller under load variations, providing valuable insights into its practical applicability and robustness. The simulation results clearly prove the superiority and high performance of the proposed control system to track the MPP of PV systems.
基于Aquila优化器的PV系统改进mpt分数阶PID
提出了一种利用分数阶比例积分导数(FOPID)控制器跟踪光伏系统最大功率点(MPP)的方法。所采用的MPPT是基于dp/dv反馈方法操作的。所设计的FOPID-MPPT方法包括一个阶微分器(μ)和阶积器(λ),这意味着它是传统PID控制器的扩展。FOPID具有更大的灵活性,可实现动态整定,使控制系统更加高效。本文的贡献在于使用Aquila优化器(AO)优化FOPID-MPPT参数。并与蛾焰优化器(MFO)的结果进行了对比。分析了FOPID-MPPT控制器采用传统的扰动观测方法(P& 0)和经典的PID控制器的性能。此外,鲁棒性测试用于评估负载变化下FOPID-MPPT控制器的性能,为其实际适用性和鲁棒性提供了有价值的见解。仿真结果清楚地证明了所提出的控制系统在光伏系统MPP跟踪方面的优越性和高性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信