Practical OSINT investigation in Twitter utilizing AI-based aggressiveness analysis

Artem Sklyar, Klaus Schwarz, Reiner Creutzburg
{"title":"Practical OSINT investigation in Twitter utilizing AI-based aggressiveness analysis","authors":"Artem Sklyar, Klaus Schwarz, Reiner Creutzburg","doi":"10.2352/ei.2023.35.3.mobmu-355","DOIUrl":null,"url":null,"abstract":"Open-source intelligence is gaining popularity due to the rapid development of social networks. There is more and more information in the public domain. One of the most popular social networks is Twitter. It was chosen to analyze the dependence of changes in the number of likes, reposts, quotes and retweets on the aggressiveness of the post text for a separate profile, as this information can be important not only for the owner of the channel in the social network, but also for other studies that in some way influence user accounts and their behavior in the social network. Furthermore, this work includes a detailed analysis and evaluation of the Tweety library capabilities and situations in which it can be effectively applied. Lastly, this work includes the creation and description of a compiled neural network whose purpose is to predict changes in the number of likes, reposts, quotes, and retweets from the aggressiveness of the post text for a separate profile.","PeriodicalId":73514,"journal":{"name":"IS&T International Symposium on Electronic Imaging","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IS&T International Symposium on Electronic Imaging","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2352/ei.2023.35.3.mobmu-355","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Open-source intelligence is gaining popularity due to the rapid development of social networks. There is more and more information in the public domain. One of the most popular social networks is Twitter. It was chosen to analyze the dependence of changes in the number of likes, reposts, quotes and retweets on the aggressiveness of the post text for a separate profile, as this information can be important not only for the owner of the channel in the social network, but also for other studies that in some way influence user accounts and their behavior in the social network. Furthermore, this work includes a detailed analysis and evaluation of the Tweety library capabilities and situations in which it can be effectively applied. Lastly, this work includes the creation and description of a compiled neural network whose purpose is to predict changes in the number of likes, reposts, quotes, and retweets from the aggressiveness of the post text for a separate profile.
利用基于人工智能的攻击性分析对Twitter进行实际OSINT调查
由于社交网络的快速发展,开源智能越来越受欢迎。在公共领域有越来越多的信息。最受欢迎的社交网络之一是Twitter。选择它来分析喜欢,转发,引用和转发的数量变化对单独配置文件的帖子文本攻击性的依赖关系,因为这些信息不仅对社交网络中频道的所有者很重要,而且对其他研究也很重要,这些研究以某种方式影响用户帐户及其在社交网络中的行为。此外,这项工作还包括对Tweety库功能的详细分析和评估,以及它可以有效应用的情况。最后,这项工作包括创建和描述一个编译的神经网络,其目的是预测喜欢、转发、引用和转发数量的变化,从帖子文本的攻击性中获得一个单独的个人资料。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信