A note on limits of sequences of binary trees

IF 0.7 4区 数学
Rudolf Grübel
{"title":"A note on limits of sequences of binary trees","authors":"Rudolf Grübel","doi":"10.46298/dmtcs.10968","DOIUrl":null,"url":null,"abstract":"We discuss a notion of convergence for binary trees that is based on subtree sizes. In analogy to recent developments in the theory of graphs, posets and permutations we investigate some general aspects of the topology, such as a characterization of the set of possible limits and its structure as a metric space. For random trees the subtree size topology arises in the context of algorithms for searching and sorting when applied to random input, resulting in a sequence of nested trees. For these we obtain a structural result based on a local version of exchangeability. This in turn leads to a central limit theorem, with possibly mixed asymptotic normality.","PeriodicalId":55175,"journal":{"name":"Discrete Mathematics and Theoretical Computer Science","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Mathematics and Theoretical Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.46298/dmtcs.10968","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We discuss a notion of convergence for binary trees that is based on subtree sizes. In analogy to recent developments in the theory of graphs, posets and permutations we investigate some general aspects of the topology, such as a characterization of the set of possible limits and its structure as a metric space. For random trees the subtree size topology arises in the context of algorithms for searching and sorting when applied to random input, resulting in a sequence of nested trees. For these we obtain a structural result based on a local version of exchangeability. This in turn leads to a central limit theorem, with possibly mixed asymptotic normality.
二叉树序列极限的注释
我们讨论了基于子树大小的二叉树的收敛性概念。与图论、偏集和置换理论的最新发展类似,我们研究了拓扑的一些一般方面,例如可能极限集合的表征及其作为度量空间的结构。对于随机树,子树大小拓扑出现在搜索和排序算法的上下文中,当应用于随机输入时,会产生一系列嵌套的树。对于这些,我们得到了一个基于可交换性的局部版本的结构结果。这反过来又引出一个中心极限定理,它可能具有混合渐近正态性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
14.30%
发文量
39
期刊介绍: DMTCS is a open access scientic journal that is online since 1998. We are member of the Free Journal Network. Sections of DMTCS Analysis of Algorithms Automata, Logic and Semantics Combinatorics Discrete Algorithms Distributed Computing and Networking Graph Theory.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信