Some Computational Methods for Solving Extended General Bivariational Inclusions

Muhammad Aslam Noor, Khalida Inayat Noor
{"title":"Some Computational Methods for Solving Extended General Bivariational Inclusions","authors":"Muhammad Aslam Noor, Khalida Inayat Noor","doi":"10.34198/ejms.13123.133163","DOIUrl":null,"url":null,"abstract":"Some new classes of extended general bivariational inclusions are introduced and analyzed. It is established that the extended general bivariational inclusions are equivalent to the fixed point problems. This equivalence is used to discuss the existence of a solution of the extended general bivariational inequalities. Some new iterative methods for solving bivariational inclusions and related optimization problems are proposed. Convergence analysis of these methods is investigated under suitable conditions. Some special cases are also discussed of the main results as applications of the main results.","PeriodicalId":482741,"journal":{"name":"Earthline Journal of Mathematical Sciences","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Earthline Journal of Mathematical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34198/ejms.13123.133163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Some new classes of extended general bivariational inclusions are introduced and analyzed. It is established that the extended general bivariational inclusions are equivalent to the fixed point problems. This equivalence is used to discuss the existence of a solution of the extended general bivariational inequalities. Some new iterative methods for solving bivariational inclusions and related optimization problems are proposed. Convergence analysis of these methods is investigated under suitable conditions. Some special cases are also discussed of the main results as applications of the main results.
求解扩展一般二变包含的几种计算方法
介绍并分析了几种新的扩展广义二元包含。证明了广义二变包含等价于不动点问题。这个等价被用来讨论广义二变不等式解的存在性。提出了求解二元包含和相关优化问题的一些新的迭代方法。在适当的条件下,研究了这些方法的收敛性分析。本文还讨论了作为主要结果应用的一些特殊情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信