Cocompact embedding theorem for functions of bounded variation into Lorentz spaces

IF 0.7 3区 数学 Q2 MATHEMATICS
Lin Zhao
{"title":"Cocompact embedding theorem for functions of bounded variation into Lorentz spaces","authors":"Lin Zhao","doi":"10.4171/zaa/1728","DOIUrl":null,"url":null,"abstract":"We show that the embedding $\\dot{\\mathrm{BV}}(\\mathbb{R}^N)\\hookrightarrow L^{1^\\ast,q}(\\mathbb{R}^N)$, $q>1$ is cocompact with respect to the group and the profile decomposition for $\\dot{\\mathrm{BV}}(\\mathbb{R}^N)$. This paper extends the cocompactness and profile decomposition for the critical space $L^{1^\\ast}(\\mathbb{R}^N)$ to Lorentz spaces $L^{1^\\ast,q}(\\mathbb{R}^N)$, $q>1$. A\\~counterexample for $\\dot{\\mathrm{BV}}(\\mathbb{R}^N)\\hookrightarrow L^{1^\\ast,1}(\\mathbb{R}^N)$ not cocompact is given in the last section.","PeriodicalId":54402,"journal":{"name":"Zeitschrift fur Analysis und ihre Anwendungen","volume":"16 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Zeitschrift fur Analysis und ihre Anwendungen","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4171/zaa/1728","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We show that the embedding $\dot{\mathrm{BV}}(\mathbb{R}^N)\hookrightarrow L^{1^\ast,q}(\mathbb{R}^N)$, $q>1$ is cocompact with respect to the group and the profile decomposition for $\dot{\mathrm{BV}}(\mathbb{R}^N)$. This paper extends the cocompactness and profile decomposition for the critical space $L^{1^\ast}(\mathbb{R}^N)$ to Lorentz spaces $L^{1^\ast,q}(\mathbb{R}^N)$, $q>1$. A\~counterexample for $\dot{\mathrm{BV}}(\mathbb{R}^N)\hookrightarrow L^{1^\ast,1}(\mathbb{R}^N)$ not cocompact is given in the last section.
有界变分函数在洛伦兹空间中的紧嵌入定理
我们证明了嵌入$\dot{\ mathm {BV}}(\mathbb{R}^N)\hookrightarrow L^{1^\ast,q}(\mathbb{R}^N)$, $q>1$对于群和$\dot{\ mathm {BV}}(\mathbb{R}^N)$的剖分是紧的。本文将临界空间$L^{1^ ast}(\mathbb{R}^N)$的紧性和轮廓分解推广到洛伦兹空间$L^{1^ ast,q}(\mathbb{R}^N)$, $q>1$。$\dot{\ mathm {BV}}(\mathbb{R}^N)\hookrightarrow L^{1^\ast,1}(\mathbb{R}^N)$不紧的反例在最后一节给出。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
16
审稿时长
>12 weeks
期刊介绍: The Journal of Analysis and its Applications aims at disseminating theoretical knowledge in the field of analysis and, at the same time, cultivating and extending its applications. To this end, it publishes research articles on differential equations and variational problems, functional analysis and operator theory together with their theoretical foundations and their applications – within mathematics, physics and other disciplines of the exact sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信