CSP beyond tractable constraint languages

Jan Dreier, Sebastian Ordyniak, Stefan Szeider
{"title":"CSP beyond tractable constraint languages","authors":"Jan Dreier, Sebastian Ordyniak, Stefan Szeider","doi":"10.1007/s10601-023-09362-3","DOIUrl":null,"url":null,"abstract":"Abstract The constraint satisfaction problem (CSP) is among the most studied computational problems. While NP-hard, many tractable subproblems have been identified (Bulatov 2017, Zhuk 2017) Backdoors, introduced by Williams, Gomes, and Selman (2003), gradually extend such a tractable class to all CSP instances of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a CSP instance and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021) for SAT, is a more refined distance measure, which admits the parallel utilization of different backdoor variables. Bounded backdoor size implies bounded backdoor depth, but there are instances of constant backdoor depth and arbitrarily large backdoor size. Dreier, Ordyniak, and Szeider (2022) provided fixed-parameter algorithms for finding backdoors of small depth into the classes of Horn and Krom formulas. In this paper, we consider backdoor depth for CSP. We consider backdoors w.r.t. tractable subproblems $$C_\\Gamma $$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>C</mml:mi> <mml:mi>Γ</mml:mi> </mml:msub> </mml:math> of the CSP defined by a constraint language $$\\varvec{\\Gamma }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> </mml:mrow> </mml:math> , i.e., where all the constraints use relations from the language $$\\varvec{\\Gamma }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> </mml:mrow> </mml:math> . Building upon Dreier et al.’s game-theoretic approach and their notion of separator obstructions, we show that for any finite, tractable, semi-conservative constraint language $$\\varvec{\\Gamma }$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:mrow> <mml:mi>Γ</mml:mi> </mml:mrow> </mml:math> , the CSP is fixed-parameter tractable parameterized by the backdoor depth into $$C_{\\varvec{\\Gamma }}$$ <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\"> <mml:msub> <mml:mi>C</mml:mi> <mml:mrow> <mml:mi>Γ</mml:mi> </mml:mrow> </mml:msub> </mml:math> plus the domain size. With backdoors of low depth, we reach classes of instances that require backdoors of arbitrary large size. Hence, our results strictly generalize several known results for CSP that are based on backdoor size.","PeriodicalId":127439,"journal":{"name":"Constraints - An International Journal","volume":"142 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Constraints - An International Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10601-023-09362-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract The constraint satisfaction problem (CSP) is among the most studied computational problems. While NP-hard, many tractable subproblems have been identified (Bulatov 2017, Zhuk 2017) Backdoors, introduced by Williams, Gomes, and Selman (2003), gradually extend such a tractable class to all CSP instances of bounded distance to the class. Backdoor size provides a natural but rather crude distance measure between a CSP instance and a tractable class. Backdoor depth, introduced by Mählmann, Siebertz, and Vigny (2021) for SAT, is a more refined distance measure, which admits the parallel utilization of different backdoor variables. Bounded backdoor size implies bounded backdoor depth, but there are instances of constant backdoor depth and arbitrarily large backdoor size. Dreier, Ordyniak, and Szeider (2022) provided fixed-parameter algorithms for finding backdoors of small depth into the classes of Horn and Krom formulas. In this paper, we consider backdoor depth for CSP. We consider backdoors w.r.t. tractable subproblems $$C_\Gamma $$ C Γ of the CSP defined by a constraint language $$\varvec{\Gamma }$$ Γ , i.e., where all the constraints use relations from the language $$\varvec{\Gamma }$$ Γ . Building upon Dreier et al.’s game-theoretic approach and their notion of separator obstructions, we show that for any finite, tractable, semi-conservative constraint language $$\varvec{\Gamma }$$ Γ , the CSP is fixed-parameter tractable parameterized by the backdoor depth into $$C_{\varvec{\Gamma }}$$ C Γ plus the domain size. With backdoors of low depth, we reach classes of instances that require backdoors of arbitrary large size. Hence, our results strictly generalize several known results for CSP that are based on backdoor size.

Abstract Image

超越可处理约束语言的CSP
约束满足问题(CSP)是研究最多的计算问题之一。虽然np困难,但已经确定了许多可处理的子问题(bullatov 2017, Zhuk 2017)。Williams, Gomes和Selman(2003)引入的后门,逐渐将这种可处理的类扩展到类的有界距离的所有CSP实例。后门大小提供了CSP实例和可处理类之间自然但相当粗糙的距离度量。由Mählmann、Siebertz和Vigny(2021)为SAT引入的后门深度是一种更精细的距离度量,它允许并行利用不同的后门变量。有限的后门大小意味着有限的后门深度,但也存在后门深度恒定和后门大小任意大的实例。Dreier, Ordyniak, and Szeider(2022)提供了固定参数算法,用于在Horn和Krom公式类中寻找小深度的后门。本文考虑了CSP的后门深度。我们考虑后门w.r.t.由约束语言$$\varvec{\Gamma }$$ Γ定义的CSP的可处理子问题$$C_\Gamma $$ C Γ,即,其中所有约束都使用来自语言$$\varvec{\Gamma }$$ Γ的关系。基于Dreier等人的博弈论方法及其分隔障碍的概念,我们证明了对于任何有限的,可处理的,半保守的约束语言$$\varvec{\Gamma }$$ Γ, CSP是固定参数可处理的,由后门深度$$C_{\varvec{\Gamma }}$$ C Γ加上域大小参数化。使用低深度的后门,我们可以得到需要任意大尺寸后门的实例类。因此,我们的结果严格概括了基于后门大小的CSP的几个已知结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信