{"title":"Event-Triggered Adaptive Neural Network Trajectory Tracking Control For Underactuated Ships Under Uncertain Disturbance","authors":"Wenxue Su, Qiang Zhang, Yufeng Liu","doi":"10.2478/pomr-2023-0045","DOIUrl":null,"url":null,"abstract":"Abstract An adaptive neural network (NN) event-triggered trajectory tracking control scheme based on finite time convergence is proposed to address the problem of trajectory tracking control of underdriven surface ships. In this scheme, both NNs and minimum learning parameters (MLPS) are applied. The internal and external uncertainties are approximated by NNs. To reduce the computational complexity, MLPs are used in the proposed controller. An event-triggered technique is then incorporated into the control design to synthesise an adaptive NN-based event-triggered controller with finite-time convergence. Lyapunov theory is applied to prove that all signals are bounded in the tracking system of underactuated vessels, and to show that Zeno behavior can be avoided. The validity of this control scheme is determined based on simulation results, and comparisons with some alternative schemes are presented.","PeriodicalId":49681,"journal":{"name":"Polish Maritime Research","volume":"78 1","pages":"0"},"PeriodicalIF":2.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Maritime Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pomr-2023-0045","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MARINE","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract An adaptive neural network (NN) event-triggered trajectory tracking control scheme based on finite time convergence is proposed to address the problem of trajectory tracking control of underdriven surface ships. In this scheme, both NNs and minimum learning parameters (MLPS) are applied. The internal and external uncertainties are approximated by NNs. To reduce the computational complexity, MLPs are used in the proposed controller. An event-triggered technique is then incorporated into the control design to synthesise an adaptive NN-based event-triggered controller with finite-time convergence. Lyapunov theory is applied to prove that all signals are bounded in the tracking system of underactuated vessels, and to show that Zeno behavior can be avoided. The validity of this control scheme is determined based on simulation results, and comparisons with some alternative schemes are presented.
期刊介绍:
The scope of the journal covers selected issues related to all phases of product lifecycle and corresponding technologies for offshore floating and fixed structures and their components.
All researchers are invited to submit their original papers for peer review and publications related to methods of the design; production and manufacturing; maintenance and operational processes of such technical items as:
all types of vessels and their equipment,
fixed and floating offshore units and their components,
autonomous underwater vehicle (AUV) and remotely operated vehicle (ROV).
We welcome submissions from these fields in the following technical topics:
ship hydrodynamics: buoyancy and stability; ship resistance and propulsion, etc.,
structural integrity of ship and offshore unit structures: materials; welding; fatigue and fracture, etc.,
marine equipment: ship and offshore unit power plants: overboarding equipment; etc.