Design of a CPU Heat Sink with Minichannel-Fins & its Thermal Analysis

IF 0.7 4区 工程技术 Q4 CHEMISTRY, APPLIED
Mehmet Emin Arzutuğ
{"title":"Design of a CPU Heat Sink with Minichannel-Fins & its Thermal Analysis","authors":"Mehmet Emin Arzutuğ","doi":"10.2478/pjct-2023-0029","DOIUrl":null,"url":null,"abstract":"Abstract In this paper, the design and the thermal analysis of a tribled microprocessor cooler combining the advantages of strong swirl flow and minichannel-fins and CuO nanofluid, have been presented. It is thought that the results will contribute to the understanding of the effects of parameters on the cooling flux of the heat sink and the decline at the microprocessor temperature, as Reynolds number in the minichannels and CuO % volume fraction. The results have exhibited that the total performance of the heat sink cooled with the mixture of water–CuO-EG nanofluids increases with the increase of Re number and the %load of nanoparticles in the coolant. It has been determined that the energy withdrawn from the microprocessor was 241 times higher than the energy generated for maximum CuO load and Re number conditions. Besides, the highest temperature decrease has been measured at the maximum CuO load value and maximum Re number.","PeriodicalId":20324,"journal":{"name":"Polish Journal of Chemical Technology","volume":"43 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polish Journal of Chemical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/pjct-2023-0029","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract In this paper, the design and the thermal analysis of a tribled microprocessor cooler combining the advantages of strong swirl flow and minichannel-fins and CuO nanofluid, have been presented. It is thought that the results will contribute to the understanding of the effects of parameters on the cooling flux of the heat sink and the decline at the microprocessor temperature, as Reynolds number in the minichannels and CuO % volume fraction. The results have exhibited that the total performance of the heat sink cooled with the mixture of water–CuO-EG nanofluids increases with the increase of Re number and the %load of nanoparticles in the coolant. It has been determined that the energy withdrawn from the microprocessor was 241 times higher than the energy generated for maximum CuO load and Re number conditions. Besides, the highest temperature decrease has been measured at the maximum CuO load value and maximum Re number.
一种带小通道散热片的CPU散热器设计其热分析
本文介绍了一种结合强旋流、微通道翅片和CuO纳米流体优点的三层微处理器冷却器的设计和热分析。本文的研究结果有助于理解微处理器温度下,微通道内雷诺数和CuO %体积分数等参数对散热器冷却通量的影响。结果表明:水- cuo - eg纳米流体混合冷却散热器的总性能随着Re数的增加和冷却剂中纳米颗粒负载百分比的增加而提高。从微处理器中提取的能量比最大CuO负载和Re数条件下产生的能量高241倍。此外,在最大CuO负荷值和最大Re数处测得的温度降幅最大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Polish Journal of Chemical Technology
Polish Journal of Chemical Technology CHEMISTRY, APPLIED-ENGINEERING, CHEMICAL
CiteScore
1.70
自引率
10.00%
发文量
22
审稿时长
4.5 months
期刊介绍: Polish Journal of Chemical Technology is a peer-reviewed, international journal devoted to fundamental and applied chemistry, as well as chemical engineering and biotechnology research. It has a very broad scope but favors interdisciplinary research that bring chemical technology together with other disciplines. All authors receive very fast and comprehensive peer-review. Additionally, every published article is promoted to researchers working in the same field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信