Design of an Optimal Cooperative Guidance Law Confronting Evaders with High Maneuver

{"title":"Design of an Optimal Cooperative Guidance Law Confronting Evaders with High Maneuver","authors":"","doi":"10.47176/jcme.42.1.9081","DOIUrl":null,"url":null,"abstract":"The problem of cooperative guidance of two pursuers against an evader equipped with higher maneuverability is investigated. The goal is that the distance between the evader and at least one of the pursuers becomes less than a predetermined threshold at the end of the flight time. To achieve this goal, firstly, the roles of pursuers are divided into two units, which include 1) pursuing the evader 2) Observing the evader’s scape space. Secondly, a novel cooperative guidance law based on the optimal separation of roles of the pursuers is proposed and formulated into a constrained nonlinear optimal control problem. Thirdly, the problem is solved using the Direct Collocation with Nonlinear Programming (DCNLP) method which is an optimization approach. Finally, several numerical simulations are presented to verify the effectiveness of the proposed cooperative guidance law.","PeriodicalId":31381,"journal":{"name":"Ravishhayi adadi dar Muhandisi","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ravishhayi adadi dar Muhandisi","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47176/jcme.42.1.9081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The problem of cooperative guidance of two pursuers against an evader equipped with higher maneuverability is investigated. The goal is that the distance between the evader and at least one of the pursuers becomes less than a predetermined threshold at the end of the flight time. To achieve this goal, firstly, the roles of pursuers are divided into two units, which include 1) pursuing the evader 2) Observing the evader’s scape space. Secondly, a novel cooperative guidance law based on the optimal separation of roles of the pursuers is proposed and formulated into a constrained nonlinear optimal control problem. Thirdly, the problem is solved using the Direct Collocation with Nonlinear Programming (DCNLP) method which is an optimization approach. Finally, several numerical simulations are presented to verify the effectiveness of the proposed cooperative guidance law.
面对高机动规避者的最优协同制导律设计
研究了双跟踪机协同制导对抗机动性较高的逃避机的问题。目标是在飞行时间结束时,逃避者与至少一个追踪者之间的距离小于预定的阈值。为了实现这一目标,首先将追捕者的角色划分为两个单元:1)追捕逃避者2)观察逃避者的逃脱空间。其次,提出了一种基于跟踪者角色最优分离的新型协同制导律,并将其表述为约束非线性最优控制问题。第三,采用非线性规划直接配置法(DCNLP)求解问题,这是一种最优化方法。最后,通过数值仿真验证了所提协同制导律的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
7
审稿时长
10 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信