{"title":"Exergy analysis in an HCCI engine powered with hydrogen enriched natural gas","authors":"Tawfiq Abdul Aziz Al Mughanam, Abdul Khaliq","doi":"10.1504/ijex.2023.131484","DOIUrl":null,"url":null,"abstract":"HCCI combustion is a very promising technology as it provides low NOx and soot formations with high efficiency. In the present investigation, the performance of turbocharged HCCI engine operated with hydrogen enriched natural gas was assessed using exergy analysis. The impact of equivalence ratio, turbocharger pressure, atmospheric temperature, and hydrogen enrichment has been ascertained on the engine's energy and exergy efficiencies. Special attention is given to identification and quantification of irreversibility of combustion and heat transfer processes using the concept of entropy generation and exergy loss. It is demonstrated that combustion and heat transfer irreversibilities in HCCI engine can be reduced from 55% to 43.4% and its power output is augmented from 31.4% to 38.4% if natural gas is replaced with 100% hydrogen. Overall, the results of second law analysis for engine under consideration show that variations of operational parameters examined have considerably affected the exergy transfer, irreversibilities and efficiencies.","PeriodicalId":50325,"journal":{"name":"International Journal of Exergy","volume":"135 1","pages":"0"},"PeriodicalIF":1.1000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Exergy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijex.2023.131484","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 1
Abstract
HCCI combustion is a very promising technology as it provides low NOx and soot formations with high efficiency. In the present investigation, the performance of turbocharged HCCI engine operated with hydrogen enriched natural gas was assessed using exergy analysis. The impact of equivalence ratio, turbocharger pressure, atmospheric temperature, and hydrogen enrichment has been ascertained on the engine's energy and exergy efficiencies. Special attention is given to identification and quantification of irreversibility of combustion and heat transfer processes using the concept of entropy generation and exergy loss. It is demonstrated that combustion and heat transfer irreversibilities in HCCI engine can be reduced from 55% to 43.4% and its power output is augmented from 31.4% to 38.4% if natural gas is replaced with 100% hydrogen. Overall, the results of second law analysis for engine under consideration show that variations of operational parameters examined have considerably affected the exergy transfer, irreversibilities and efficiencies.
期刊介绍:
IJEX is dedicated to providing an interdisciplinary platform for information and ideas in the field of exergy and thermodynamic optimisation. It publishes a wide range of original, high-quality research papers, and ancillary features, spanning activities from fundamental research to industrial applications. IJEX covers aspects of exergy analysis of engineering and non-engineering systems and processes in a large variety of disciplines, ranging from mechanical engineering to physics and chemical engineering to industrial ecology.
Topics covered include:
-Thermodynamic systems
-Energy-related applications
-Process optimisation
-Energy systems, policies, planning
-Exergy/environment modelling
-Exergetic life cycle assessment
-Industrial ecology
-Sectoral exergy utilisation
-Waste exergy emissions
-Second-law efficiency
-Thermo- and exergo-economics
-Exergy in sustainable development
-Criticisms of and problems with use of exergy
-Entropy generation minimisation
-Constructal theory and design