Inverse problems for the beam vibration equation with involution

IF 0.6 Q3 MATHEMATICS
A.B. Imanbetova, Abdissalam Sarsenbi, Bolat Seilbekov
{"title":"Inverse problems for the beam vibration equation with involution","authors":"A.B. Imanbetova, Abdissalam Sarsenbi, Bolat Seilbekov","doi":"10.35634/vm230305","DOIUrl":null,"url":null,"abstract":"This article considers inverse problems for a fourth-order hyperbolic equation with involution. The existence and uniqueness of a solution of the studied inverse problems is established by the method of separation of variables. To apply the method of separation of variables, we prove the Riesz basis property of the eigenfunctions for a fourth-order differential operator with involution in the space ${{L}_{2}}(-1,1)$. For proving theorems on the existence and uniqueness of a solution, we widely use the Bessel inequality for the coefficients of expansions into a Fourier series in the space ${{L}_{2}}(-1,1)$. A significant dependence of the existence of a solution on the equation coefficient $\\alpha$ is shown. In each of the cases $\\alpha <-1$, $\\alpha >1$, $-1<\\alpha<1$ representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are written out.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230305","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

This article considers inverse problems for a fourth-order hyperbolic equation with involution. The existence and uniqueness of a solution of the studied inverse problems is established by the method of separation of variables. To apply the method of separation of variables, we prove the Riesz basis property of the eigenfunctions for a fourth-order differential operator with involution in the space ${{L}_{2}}(-1,1)$. For proving theorems on the existence and uniqueness of a solution, we widely use the Bessel inequality for the coefficients of expansions into a Fourier series in the space ${{L}_{2}}(-1,1)$. A significant dependence of the existence of a solution on the equation coefficient $\alpha$ is shown. In each of the cases $\alpha <-1$, $\alpha >1$, $-1<\alpha<1$ representations of solutions in the form of Fourier series in terms of eigenfunctions of boundary value problems for a fourth-order equation with involution are written out.
带对合的梁振动方程的反问题
研究一类四阶对合双曲方程的反问题。用分离变量的方法证明了所研究的反问题解的存在唯一性。为了应用分离变量的方法,证明了空间${{L}_{2}}(-1,1)$上具有对合的四阶微分算子的特征函数的Riesz基性质。在空间${{L}_{2}}(-1,1)$的傅里叶级数展开式系数中,为了证明解的存在唯一性定理,我们广泛地使用了贝塞尔不等式。解的存在性对方程系数$\alpha$的重要依赖性被证明。在每一种情况下$\ α <-1$, $\ α >1$, $-1<\ α <1$的解的傅里叶级数形式的特征函数的形式的解的对合四阶方程的边值问题的表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信