On one semi-analytical approximation of the normal derivative of the simple layer potential near the boundary of a two-dimensional domain

IF 0.6 Q3 MATHEMATICS
D.Yu. Ivanov
{"title":"On one semi-analytical approximation of the normal derivative of the simple layer potential near the boundary of a two-dimensional domain","authors":"D.Yu. Ivanov","doi":"10.35634/vm230304","DOIUrl":null,"url":null,"abstract":"On the basis of piecewise quadratic interpolation, semi-analytical approximations of the normal derivative of the simple layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration over the variable $\\rho=(r^{2}-d^{2})^{1/2} $ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with cubic velocity uniformly near the boundary of the class $C^{5}$, as well as on the boundary itself. It is also proved that, by analogy with the exact function, the approximations suffer a discontinuity at the boundary, the magnitude of which is proportional to the values of the interpolated density function, but they can be extended on the boundary to functions that are continuous either on a closed internal border domain or on a closed external one. Theoretical conclusions about uniform convergence are confirmed by the results of calculating the normal derivative near the boundary of a unit circle.","PeriodicalId":43239,"journal":{"name":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vestnik Udmurtskogo Universiteta-Matematika Mekhanika Kompyuternye Nauki","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.35634/vm230304","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

On the basis of piecewise quadratic interpolation, semi-analytical approximations of the normal derivative of the simple layer potential near and on the boundary of a two-dimensional domain are obtained. To calculate the integrals formed after the interpolation of the density function, exact integration over the variable $\rho=(r^{2}-d^{2})^{1/2} $ is used, where $d$ and $r$ are the distances from the observed point to the boundary of the domain and to the boundary point of integration, respectively. The study proves the stable convergence of such approximations with cubic velocity uniformly near the boundary of the class $C^{5}$, as well as on the boundary itself. It is also proved that, by analogy with the exact function, the approximations suffer a discontinuity at the boundary, the magnitude of which is proportional to the values of the interpolated density function, but they can be extended on the boundary to functions that are continuous either on a closed internal border domain or on a closed external one. Theoretical conclusions about uniform convergence are confirmed by the results of calculating the normal derivative near the boundary of a unit circle.
二维域边界附近简单层势法向导数的半解析近似
在分段二次插值的基础上,得到了二维区域边界附近和边界上简单层势法向导数的半解析近似。为了计算密度函数插值后形成的积分,使用变量$\rho=(r^{2}-d^{2})^{1/2} $上的精确积分,其中$d$和$r$分别是观测点到域边界和到积分边界点的距离。研究证明了这种具有三次速度的近似在类$C^{5}$的边界附近均匀收敛,以及在边界本身收敛。还证明了,与精确函数类比,近似在边界处存在不连续,其大小与插值密度函数的值成正比,但它们可以在边界上扩展为在封闭的内边界域或封闭的外边界域上连续的函数。通过计算单位圆边界附近法向导数的结果,证实了一致收敛的理论结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
40.00%
发文量
27
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信