Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions

Pub Date : 2023-01-01 DOI:10.2298/fil2304241h
Khalid Hilal, Ahmed Kajouni, Hamid Lmou
{"title":"Existence and stability results for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions","authors":"Khalid Hilal, Ahmed Kajouni, Hamid Lmou","doi":"10.2298/fil2304241h","DOIUrl":null,"url":null,"abstract":"This paper deals with the existence and uniqueness of solution for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions. The novelty of this work is that it is more general than the works based on the derivative of Caputo and Riemann-Liouville, because when ? = 0 we find the Riemann-Liouville fractional derivative and when ? = 1 we find the Caputo fractional derivative. Initially, we give some definitions and notions that will be used throughout the work, after that we will establish the existence and uniqueness results by employing the fixed point theorems. Finaly, we investigate different kinds of stability such as Ulam-Hyers stability, generalized Ulam-Hyers stability.","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2298/fil2304241h","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper deals with the existence and uniqueness of solution for a coupled system of Hilfer fractional Langevin equation with non local integral boundary value conditions. The novelty of this work is that it is more general than the works based on the derivative of Caputo and Riemann-Liouville, because when ? = 0 we find the Riemann-Liouville fractional derivative and when ? = 1 we find the Caputo fractional derivative. Initially, we give some definitions and notions that will be used throughout the work, after that we will establish the existence and uniqueness results by employing the fixed point theorems. Finaly, we investigate different kinds of stability such as Ulam-Hyers stability, generalized Ulam-Hyers stability.
分享
查看原文
非局部积分边值条件下Hilfer分数阶Langevin方程耦合系统的存在性和稳定性结果
研究了一类具有非局部积分边值条件的Hilfer分数阶Langevin方程耦合系统解的存在唯一性。这个作品的新奇之处在于它比基于Caputo和Riemann-Liouville衍生的作品更普遍,因为什么时候?= 0我们找到黎曼-刘维尔分数阶导数,什么时候?= 1,我们找到了卡普托分数阶导数。首先,我们给出了一些定义和概念,这些定义和概念将在整个工作中使用,然后我们将利用不动点定理建立存在唯一性结果。最后,我们研究了不同类型的稳定性,如Ulam-Hyers稳定性、广义Ulam-Hyers稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信