{"title":"Finite coverings of semigroups and related structures","authors":"Casey Donoven, Luise-Charlotte Kappe","doi":"10.22108/ijgt.2022.131538.1759","DOIUrl":null,"url":null,"abstract":"For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.","PeriodicalId":492099,"journal":{"name":"DOAJ (DOAJ: Directory of Open Access Journals)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"DOAJ (DOAJ: Directory of Open Access Journals)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22108/ijgt.2022.131538.1759","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
For a semigroup $S$, the covering number of $S$ with respect to semigroups, $\sigma_s(S)$, is the minimum number of proper subsemigroups of $S$ whose union is $S$. This article investigates covering numbers of semigroups and analogously defined covering numbers of inverse semigroups and monoids. Our three main theorems give a complete description of the covering number of finite semigroups, finite inverse semigroups, and monoids (modulo groups and infinite semigroups). For a finite semigroup that is neither monogenic nor a group, its covering number is two. For all $n\geq 2$, there exists an inverse semigroup with covering number $n$, similar to the case of loops. Finally, a monoid that is neither a group nor a semigroup with an identity adjoined has covering number two as well.