Isoperimetry and volume preserving stability in real projective spaces

IF 1.3 1区 数学 Q1 MATHEMATICS
Celso Viana
{"title":"Isoperimetry and volume preserving stability in real projective spaces","authors":"Celso Viana","doi":"10.4310/jdg/1695236595","DOIUrl":null,"url":null,"abstract":"We classify the volume preserving stable hypersurfaces in the real projective space $\\mathbb{RP}^n$. As a consequence, the solutions of the isoperimetric problem are tubular neighborhoods of projective subspaces $\\mathbb{RP}^k \\subset \\mathbb{RP}^n$ (starting with points). This confirms a conjecture of Burago and Zalgaller from 1988 and extends to higher dimensions previous result of M. Ritoré and A. Ros on $\\mathbb{RP}^3$. We also derive an Willmore type inequality for antipodal invariant hypersurfaces in $\\mathbb{S}^n$.","PeriodicalId":15642,"journal":{"name":"Journal of Differential Geometry","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Geometry","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4310/jdg/1695236595","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 3

Abstract

We classify the volume preserving stable hypersurfaces in the real projective space $\mathbb{RP}^n$. As a consequence, the solutions of the isoperimetric problem are tubular neighborhoods of projective subspaces $\mathbb{RP}^k \subset \mathbb{RP}^n$ (starting with points). This confirms a conjecture of Burago and Zalgaller from 1988 and extends to higher dimensions previous result of M. Ritoré and A. Ros on $\mathbb{RP}^3$. We also derive an Willmore type inequality for antipodal invariant hypersurfaces in $\mathbb{S}^n$.
实射影空间中的等距性和保体积稳定性
我们对实数投影空间$\mathbb{RP}^n$中的保体积稳定超曲面进行了分类。因此,等周问题的解是投影子空间$\mathbb{RP}^k \子集\mathbb{RP}^n$的管状邻域(从点开始)。这证实了Burago和Zalgaller(1988)的一个猜想,并将M. ritor和a . Ros在$\mathbb{RP}^3$上的先前结果推广到更高维度。我们也得到了$\mathbb{S}^n$中对映不变超曲面的一个Willmore型不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.40
自引率
0.00%
发文量
24
审稿时长
>12 weeks
期刊介绍: Publishes the latest research in differential geometry and related areas of differential equations, mathematical physics, algebraic geometry, and geometric topology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信