{"title":"Deterministic surface roughness effects on elastic material contact with shear thinning fluid media","authors":"Siyoul Jang","doi":"10.1093/jcde/qwad098","DOIUrl":null,"url":null,"abstract":"Abstract The formation of lubrication films is described using the hydrodynamic lubrication theory, which is based on the Reynolds equation that includes shear thinning behaviors of lubricant. Contacting surfaces are considered to undergo elastic deformation owing to concentrated contact pressures that exceed 1.0 GPa in most engineering applications. Under the contact condition of a high load on a relatively small contact area, elastic deformation of contacting bodies directly influences the formation of the lubricated film. Elastohydrodynamic lubrication (EHL) analysis is applied to correctly analyze the lubricated contact. Under an EHL contact, the scale of the lubrication film thickness is frequently less than that of the surface roughness that results from either the manufacturing or running-in processes. In this work, surface roughness is considered in detail, and two-dimensional surface roughness is measured as that characterizing general engineering surface roughness. The deterministic method regarding the surface roughness is considered for computing EHL film formation under several contact conditions such as load, contact velocity, and elasticity of contacting materials.","PeriodicalId":48611,"journal":{"name":"Journal of Computational Design and Engineering","volume":null,"pages":null},"PeriodicalIF":4.8000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computational Design and Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/jcde/qwad098","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The formation of lubrication films is described using the hydrodynamic lubrication theory, which is based on the Reynolds equation that includes shear thinning behaviors of lubricant. Contacting surfaces are considered to undergo elastic deformation owing to concentrated contact pressures that exceed 1.0 GPa in most engineering applications. Under the contact condition of a high load on a relatively small contact area, elastic deformation of contacting bodies directly influences the formation of the lubricated film. Elastohydrodynamic lubrication (EHL) analysis is applied to correctly analyze the lubricated contact. Under an EHL contact, the scale of the lubrication film thickness is frequently less than that of the surface roughness that results from either the manufacturing or running-in processes. In this work, surface roughness is considered in detail, and two-dimensional surface roughness is measured as that characterizing general engineering surface roughness. The deterministic method regarding the surface roughness is considered for computing EHL film formation under several contact conditions such as load, contact velocity, and elasticity of contacting materials.
期刊介绍:
Journal of Computational Design and Engineering is an international journal that aims to provide academia and industry with a venue for rapid publication of research papers reporting innovative computational methods and applications to achieve a major breakthrough, practical improvements, and bold new research directions within a wide range of design and engineering:
• Theory and its progress in computational advancement for design and engineering
• Development of computational framework to support large scale design and engineering
• Interaction issues among human, designed artifacts, and systems
• Knowledge-intensive technologies for intelligent and sustainable systems
• Emerging technology and convergence of technology fields presented with convincing design examples
• Educational issues for academia, practitioners, and future generation
• Proposal on new research directions as well as survey and retrospectives on mature field.