Network-based formation control of unmanned autonomous systems with directed topologies

IF 0.6 4区 工程技术 Q4 ENGINEERING, MECHANICAL
Wenjian Zhong, Yuanqing Wu, Yanzhou Li
{"title":"Network-based formation control of unmanned autonomous systems with directed topologies","authors":"Wenjian Zhong, Yuanqing Wu, Yanzhou Li","doi":"10.1504/ijvd.2023.131043","DOIUrl":null,"url":null,"abstract":"The formation control of unmanned autonomous systems with nonlinear dynamics and directed topology is studied in this paper. By virtue of ultra-wide bandwidth (UWB) localisation system, the relative position between each follower and the neighbouring agents can be obtained. A formation control condition for unmanned autonomous systems is derived by appropriately constructing a Lyapunov function. Further, a formation controller is designed to form the formation of all autonomous agents and reach the consensus of velocities. Some parameters are designed to ensure the feasibility of formation controller. The effectiveness of the formation control protocol is verified by numerical simulations.","PeriodicalId":54938,"journal":{"name":"International Journal of Vehicle Design","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Vehicle Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijvd.2023.131043","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

Abstract

The formation control of unmanned autonomous systems with nonlinear dynamics and directed topology is studied in this paper. By virtue of ultra-wide bandwidth (UWB) localisation system, the relative position between each follower and the neighbouring agents can be obtained. A formation control condition for unmanned autonomous systems is derived by appropriately constructing a Lyapunov function. Further, a formation controller is designed to form the formation of all autonomous agents and reach the consensus of velocities. Some parameters are designed to ensure the feasibility of formation controller. The effectiveness of the formation control protocol is verified by numerical simulations.
具有有向拓扑的无人自治系统基于网络的编队控制
研究了具有非线性动力学和有向拓扑的无人自治系统的编队控制问题。利用超宽带(UWB)定位系统,可以获得每个follower与相邻agent之间的相对位置。通过适当构造李雅普诺夫函数,导出了无人自主系统的编队控制条件。在此基础上,设计了编队控制器,使所有自主智能体形成编队,并达成速度共识。为了保证地层控制器的可行性,设计了一些参数。数值模拟验证了该控制方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Vehicle Design
International Journal of Vehicle Design 工程技术-工程:机械
CiteScore
1.10
自引率
0.00%
发文量
12
审稿时长
9 months
期刊介绍: IJVD, the journal of vehicle engineering, automotive technology and components, has been established for over a quarter of a century as an international authoritative reference in the field. It publishes the Proceedings of the International Association for Vehicle Design, which is an independent, non-profit-making learned society that exists to develop, promote and coordinate the science and practice of vehicle design and safety. Topics covered include Vehicle engineering design Automotive technology R&D of all types of self-propelled vehicles R&D of vehicle components Interface between aesthetics and engineering Integration of vehicle and components design into the development of complete vehicle systems Social and environmental impacts of vehicle design Energy Safety.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信