Joakim Wallmark, James O. Ramsay, Juan Li, Marie Wiberg
{"title":"Analyzing Polytomous Test Data: A Comparison Between an Information-Based IRT Model and the Generalized Partial Credit Model","authors":"Joakim Wallmark, James O. Ramsay, Juan Li, Marie Wiberg","doi":"10.3102/10769986231207879","DOIUrl":null,"url":null,"abstract":"Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker’s attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of information theory, and the generalized partial credit (GPC) model, a widely used parametric alternative. We evaluate these models using both simulated and real test data. In the real data examples, the OS model demonstrates superior model fit compared to the GPC model across all analyzed datasets. In our simulation study, the OS model outperforms the GPC model in terms of bias, but at the cost of larger standard errors for the probabilities along the estimated item response functions. Furthermore, we illustrate how surprisal arc length, an IRT scale invariant measure of ability with metric properties, can be used to put scores from vastly different types of IRT models on a common scale. We also demonstrate how arc length can be a viable alternative to sum scores for scoring test takers.","PeriodicalId":48001,"journal":{"name":"Journal of Educational and Behavioral Statistics","volume":"43 19","pages":"0"},"PeriodicalIF":1.9000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Educational and Behavioral Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3102/10769986231207879","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
Item response theory (IRT) models the relationship between the possible scores on a test item against a test taker’s attainment of the latent trait that the item is intended to measure. In this study, we compare two models for tests with polytomously scored items: the optimal scoring (OS) model, a nonparametric IRT model based on the principles of information theory, and the generalized partial credit (GPC) model, a widely used parametric alternative. We evaluate these models using both simulated and real test data. In the real data examples, the OS model demonstrates superior model fit compared to the GPC model across all analyzed datasets. In our simulation study, the OS model outperforms the GPC model in terms of bias, but at the cost of larger standard errors for the probabilities along the estimated item response functions. Furthermore, we illustrate how surprisal arc length, an IRT scale invariant measure of ability with metric properties, can be used to put scores from vastly different types of IRT models on a common scale. We also demonstrate how arc length can be a viable alternative to sum scores for scoring test takers.
期刊介绍:
Journal of Educational and Behavioral Statistics, sponsored jointly by the American Educational Research Association and the American Statistical Association, publishes articles that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also of interest. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority. The Journal of Educational and Behavioral Statistics provides an outlet for papers that are original and provide methods that are useful to those studying problems and issues in educational or behavioral research. Typical papers introduce new methods of analysis, provide properties of these methods, and an example of use in education or behavioral research. Critical reviews of current practice, tutorial presentations of less well known methods, and novel applications of already-known methods are also sometimes accepted. Papers discussing statistical techniques without specific educational or behavioral interest or focusing on substantive results without developing new statistical methods or models or making novel use of existing methods have lower priority. Simulation studies, either to demonstrate properties of an existing method or to compare several existing methods (without providing a new method), also have low priority.