Energy Management System for Distributed Energy Resources Using Blockchain Technology

Q3 Engineering
R. Kavin, J. Jayakumar
{"title":"Energy Management System for Distributed Energy Resources Using Blockchain Technology","authors":"R. Kavin, J. Jayakumar","doi":"10.2174/0118722121259044230920075604","DOIUrl":null,"url":null,"abstract":"Abstract: Power generation in today’s world is of utmost importance, due to which blockchain is used for the categorization and formation of decentralized structures. This paper has proposed decentralized energy generation using a nester, i.e., energy sharing without third-party intervention. Decentralized blockchain technology is applied to ensure power sharing between buyer and seller, and also to achieve efficient power transmission between prosumer and consumer. Energy management is associated with controlling and reducing energy consumption. Blockchain technology plays a major role in distributed power generation, for example, power-sharing (solar and wind energy), price fixation, energy transaction monitoring, and peer-to-peer power-sharing. These are operations performed by blockchain in renewable power generation. Solar power generation using blockchain technology can obtain an impact resting upon the power generation system. Distributed ledger is the key area of blockchain technology for recording and tracking each transaction in the distribution system to improve the efficiency of the overall transmission system. A smart contract is another important tool in the blockchain technology, which is issued to confirm an assent between buyer and seller before starting any energy transaction without external intervention and also to avoid time delay. Maximum power point tracking is conducted in PV cells using blockchain technology. Blockchain influences energy management systems to improve the utilization of energy, optimize energy usage, and also to reduce the cost.","PeriodicalId":40022,"journal":{"name":"Recent Patents on Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Recent Patents on Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2174/0118722121259044230920075604","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract: Power generation in today’s world is of utmost importance, due to which blockchain is used for the categorization and formation of decentralized structures. This paper has proposed decentralized energy generation using a nester, i.e., energy sharing without third-party intervention. Decentralized blockchain technology is applied to ensure power sharing between buyer and seller, and also to achieve efficient power transmission between prosumer and consumer. Energy management is associated with controlling and reducing energy consumption. Blockchain technology plays a major role in distributed power generation, for example, power-sharing (solar and wind energy), price fixation, energy transaction monitoring, and peer-to-peer power-sharing. These are operations performed by blockchain in renewable power generation. Solar power generation using blockchain technology can obtain an impact resting upon the power generation system. Distributed ledger is the key area of blockchain technology for recording and tracking each transaction in the distribution system to improve the efficiency of the overall transmission system. A smart contract is another important tool in the blockchain technology, which is issued to confirm an assent between buyer and seller before starting any energy transaction without external intervention and also to avoid time delay. Maximum power point tracking is conducted in PV cells using blockchain technology. Blockchain influences energy management systems to improve the utilization of energy, optimize energy usage, and also to reduce the cost.
基于区块链技术的分布式能源管理系统
摘要:发电在当今世界至关重要,因此区块链被用于分类和形成分散的结构。本文提出了利用巢式发电的分散式发电,即无第三方干预的能源共享。采用去中心化的区块链技术,确保买卖双方的电力共享,实现产销双方的高效电力传输。能源管理与控制和减少能源消耗有关。区块链技术在分布式发电中发挥着重要作用,例如电力共享(太阳能和风能)、价格固定、能源交易监控和点对点电力共享。这些都是区块链在可再生能源发电中执行的操作。利用区块链技术的太阳能发电可以对发电系统产生影响。分布式账本是区块链技术的关键领域,用于记录和跟踪分配系统中的每笔交易,以提高整个传输系统的效率。智能合约是区块链技术中的另一个重要工具,它的发布是为了在没有外部干预的情况下,在开始任何能源交易之前确认买方和卖方之间的同意,并避免时间延迟。使用区块链技术在光伏电池中进行最大功率点跟踪。区块链影响能源管理系统,以提高能源利用率,优化能源使用,并降低成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Recent Patents on Engineering
Recent Patents on Engineering Engineering-Engineering (all)
CiteScore
1.40
自引率
0.00%
发文量
100
期刊介绍: Recent Patents on Engineering publishes review articles by experts on recent patents in the major fields of engineering. A selection of important and recent patents on engineering is also included in the journal. The journal is essential reading for all researchers involved in engineering sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信