{"title":"A rapid detection method of three foodborne pathogens based on physical and chemical Raman spectroscopy enhanced","authors":"Yahui Chen, Yankun Peng, Jiewen Zuo, Tianzhen Yin","doi":"10.1016/j.vibspec.2023.103612","DOIUrl":null,"url":null,"abstract":"<div><p><em>Escherichia coli</em>, <em>Listeria monocytogenes</em>, and <em>Salmonella typhi</em><span> are three pathogens commonly found in food. Label-free enhanced substrates have limitations in achieving high sensitivity in three bacteria detection. To enable low-concentration detection and differentiation of foodborne pathogens, this research presents an optimized detection strategy using Au @Ag NPs as the enhancing substrate for SERS technology. The impact of the particle size of Au @Ag NPs and the pH of the borate buffer solution on enhancing the Raman signals of these bacteria was investigated through electromagnetic and chemical enhancement mechanisms. By evaluating the intensity of bacterial Raman spectra<span>, and employing chemometric techniques, the concentration and classification of the three bacterial species were predicted and analyzed. The research findings revealed that the optimized detection method was able to detect three pathogens at the concentration lower than 3 lg CFU/mL. Logarithmic fitting of the bacteria enabled prediction correlations above 0.98 and prediction root mean square errors below 0.17. After normalizing, efficient discrimination of low-concentration bacteria was achieved using the PLS-DA, with a classification prediction correlation greater than 0.94. The fabrication process of the proposed enhancement substrate is simple, but the stability of signal detection needs further improvement in subsequent experimental testing steps.</span></span></p></div>","PeriodicalId":23656,"journal":{"name":"Vibrational Spectroscopy","volume":"129 ","pages":"Article 103612"},"PeriodicalIF":2.7000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Vibrational Spectroscopy","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0924203123001194","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Escherichia coli, Listeria monocytogenes, and Salmonella typhi are three pathogens commonly found in food. Label-free enhanced substrates have limitations in achieving high sensitivity in three bacteria detection. To enable low-concentration detection and differentiation of foodborne pathogens, this research presents an optimized detection strategy using Au @Ag NPs as the enhancing substrate for SERS technology. The impact of the particle size of Au @Ag NPs and the pH of the borate buffer solution on enhancing the Raman signals of these bacteria was investigated through electromagnetic and chemical enhancement mechanisms. By evaluating the intensity of bacterial Raman spectra, and employing chemometric techniques, the concentration and classification of the three bacterial species were predicted and analyzed. The research findings revealed that the optimized detection method was able to detect three pathogens at the concentration lower than 3 lg CFU/mL. Logarithmic fitting of the bacteria enabled prediction correlations above 0.98 and prediction root mean square errors below 0.17. After normalizing, efficient discrimination of low-concentration bacteria was achieved using the PLS-DA, with a classification prediction correlation greater than 0.94. The fabrication process of the proposed enhancement substrate is simple, but the stability of signal detection needs further improvement in subsequent experimental testing steps.
期刊介绍:
Vibrational Spectroscopy provides a vehicle for the publication of original research that focuses on vibrational spectroscopy. This covers infrared, near-infrared and Raman spectroscopies and publishes papers dealing with developments in applications, theory, techniques and instrumentation.
The topics covered by the journal include:
Sampling techniques,
Vibrational spectroscopy coupled with separation techniques,
Instrumentation (Fourier transform, conventional and laser based),
Data manipulation,
Spectra-structure correlation and group frequencies.
The application areas covered include:
Analytical chemistry,
Bio-organic and bio-inorganic chemistry,
Organic chemistry,
Inorganic chemistry,
Catalysis,
Environmental science,
Industrial chemistry,
Materials science,
Physical chemistry,
Polymer science,
Process control,
Specialized problem solving.