Some new inequalities for n-polynomial s-type convexity pertaining to inter-valued functions governed by fractional calculus

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Zareen A. Khan, Humaira Kalsoom
{"title":"Some new inequalities for <i>n</i>-polynomial s-type convexity pertaining to inter-valued functions governed by fractional calculus","authors":"Zareen A. Khan, Humaira Kalsoom","doi":"10.1142/s0218348x23401989","DOIUrl":null,"url":null,"abstract":"The main goals of this paper are to provide an introduction to the idea of interval-valued [Formula: see text]-polynomial [Formula: see text]-type convex functions and to investigate the algebraic properties of this type of function. This new generalization aims to show the existence of new Hermite–Hadamard inequalities for the recently presented class of interval-valued [Formula: see text]-polynomials of [Formula: see text]-type convex describing the [Formula: see text]-fractional integral operator. In the classical sense, some special cases are figured out, and the two examples are also given. There are some recently discovered inequalities for interval-valued functions that are regulated by fractional calculus applicable to interval-valued [Formula: see text]-polynomial [Formula: see text]-type convexity. The results obtained show that future research will be simple to implement, highly efficient, feasible, and extremely precise in its investigation. It could also help solve modeling problems, optimization problems, and fuzzy interval-valued functions that involve both discrete and continuous variables.","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2023-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x23401989","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The main goals of this paper are to provide an introduction to the idea of interval-valued [Formula: see text]-polynomial [Formula: see text]-type convex functions and to investigate the algebraic properties of this type of function. This new generalization aims to show the existence of new Hermite–Hadamard inequalities for the recently presented class of interval-valued [Formula: see text]-polynomials of [Formula: see text]-type convex describing the [Formula: see text]-fractional integral operator. In the classical sense, some special cases are figured out, and the two examples are also given. There are some recently discovered inequalities for interval-valued functions that are regulated by fractional calculus applicable to interval-valued [Formula: see text]-polynomial [Formula: see text]-type convexity. The results obtained show that future research will be simple to implement, highly efficient, feasible, and extremely precise in its investigation. It could also help solve modeling problems, optimization problems, and fuzzy interval-valued functions that involve both discrete and continuous variables.
关于分数阶微积分控制的间值函数的n多项式s型凸性的几个新不等式
本文的主要目的是介绍区间值[公式:见文]-多项式[公式:见文]型凸函数的思想,并研究这类函数的代数性质。这一新的推广旨在证明最近提出的一类区间值[公式:见文]-描述[公式:见文]-分数积分算子的[公式:见文]-型凸的多项式-新的Hermite-Hadamard不等式的存在性。在经典意义上,指出了一些特殊情况,并给出了两个例子。最近发现了一些由分数阶微积分调节的区间值函数的不等式,这些不等式适用于区间值[公式:见文]-多项式[公式:见文]型凸性。结果表明,未来的研究将是简单、高效、可行和极其精确的调查。它还可以帮助解决建模问题、优化问题以及涉及离散变量和连续变量的模糊区间值函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信